• Title/Summary/Keyword: Recursive estimation

Search Result 330, Processing Time 0.035 seconds

An Adaptive Algorithm Applied to a Design of Robust Observer

  • Son, Young-Ik;Hyungbo Shim;Juhoon Back;Jo, Nam-Hoon
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.10
    • /
    • pp.1443-1449
    • /
    • 2003
  • Primary goal of adaptive observers would be to estimate the true states of a plant. Identification of unknown parameters is of secondary interest and is achieved frequently with the persistent excitation condition of some regressors. Nevertheless, two problems are linked to each other in the classical approaches to adaptive observers; as a result, we get a good state estimate once after a good parameter estimate is obtained. This paper focuses on the state estimation without parameter identification so that the state is estimated regardless of persistent excitation. In this direction of research, Besancon (2000) recently summarized that most of adaptive observers in the literature share one common canonical form, in which unknown parameters do not affect the unmeasured states. We enlarge the class of linear systems from the canonical form of (Besancon, 2000) by proposing an adaptive observer (with additional dynamics) that allows unknown parameters to affect those unmeasured states. A recursive algorithm is presented to design the proposed dynamic observer systematically. An example confirms the design procedure with a simulation result.

Realtime Clock Skew Estimator for Time Synchronization in Wireless Sensor Networks of WUSB and WBAN (무선 센서네트워크에서의 시각동기를 위한 실시간 클럭 스큐 추정)

  • Hur, Kyeong
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.11
    • /
    • pp.1391-1398
    • /
    • 2012
  • Time synchronization is crucial in wireless sensor networks such as Wireless USB and WBAN for diverse purposes from the MAC to the application layer. This paper proposes online clock skew estimators to achieve energy-efficient time synchronization for wireless sensor networks. By using recursive least squares estimators, we not only reduce the amount of data which should be stored locally in a table at each sensor node, but also allow offset and skew compensations to be processed simultaneously. Our skew estimators can be easily integrated with traditional offset compensation schemes. The results of simulation and experiment show that the accuracy of time synchronization can be greatly improved through our skew compensation algorithm.

Stabilization of the Time-variant Cointegrating Relations (시간가변적 공적분관계의 안정화)

  • Kim, Tae-Ho;Park, Ji-Won
    • The Korean Journal of Applied Statistics
    • /
    • v.21 no.5
    • /
    • pp.727-738
    • /
    • 2008
  • If a cointegrating relation is affected by important economic and political events occurred in the sample period, the assumption of the time-invariant cointegrating vector is violated, which leads to the misrep-resentation of the actual relations between the variables. From such a viewpoint, this study utilizes the recursive estimation process in testing for the stability of the long-run equilibrium of the domestic stock market system and then attempts to develop the framework for stabilizing time-variant cointegraing relations by introducing the dummy variables where the structural changes are found to exist.

System identification and admittance model-based nanodynamic control of ultra-precision cutting process (다이아몬드 터닝 머시인의 극초정밀 절삭공정에서의 시스템 규명 및 제어)

  • 정상화;김상석;오용훈
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1352-1355
    • /
    • 1996
  • The control of diamond turning is usually achieved through a laser-interferometer feedback of slide position. If the tool post is rigid and the material removal process is relatively static, then such a non-collocated position feedback control scheme may surface. However, as the accuracy requirement gets tighter and desired surface contours become more complex, the need for a direct tool-tip sensing becomes inevitable. The physical constraints of the machining process prohibit any reasonable implementation of a tool-tip motion measurement. It is proposed that the measured force normal to the face of the workpiece can be filtered through an appropriate admittance transfer function to result in the estimated depth of cut. This can be compared to the desired depth of cut to generate the adjustment control action in addition to position feedback control. In this work, the design methodology on the admittance model-based control with a conventional controller is presented. The recursive least-squares algorithm with forgetting factor is proposed to identify the parameters and update the cutting process in real time. The normal cutting forces are measured to identify the cutting dynamics in the real diamond turning process using the precision dynamometer. Based on the parameter estimation of cutting dynamics and the admittance model-based nanodynamic control scheme, simulation results are shown.

  • PDF

Adaptive Double Notch Filter for Interference Suppression in the GPS Receiver

  • Han, Eu-Geun;Lee, Geon-Woo;Park, Chan-Sik;Shin, Dong-Ho;Lee, Sung-Soo;Lee, Sang-Jeong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1222-1227
    • /
    • 2005
  • In this paper, an efficient scheme of the adaptive notch filter is presented for rejecting the narrow bandwidth interferences(NBI) in GPS receiver. Designed is the lattice IIR double notch filter for more efficient suppression of the NBI with less computational complexity. The algorithm is of recursive prediction error form and uses a special constrained model of IIR with a minimal number of parameters. This paper chooses seven different jamming scenarios including one without jamming for evaluating the proposed filter algorithm. The simulation results to the jamming scenarios show that the proposed algorithm adjusts the double notch filter effectively for the given JSR, and provides better SNR than the conventional algorithms. Finally, it is shown that the advantages of the proposed filter algorithm can range as high as JSR 79dB in time domain processing. Also, the ADNF(adaptive double notch filter) guarantees that more than SNR 10dB of GPS receiver can be always maintained. In conclusion, there is enough evidence to believe that the proposed algorithm will perform quite well for removing interference signals.

  • PDF

Gain Compensation Method for Codebook-Based Speech Enhancement (코드북 기반 음성향상 기법을 위한 게인 보상 방법)

  • Jung, Seungmo;Kim, Moo Young
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.9
    • /
    • pp.165-170
    • /
    • 2014
  • Speech enhancement techniques that remove surrounding noise are stressed to preprocessor of speech recognition. Among the various speech enhancement techniques, Codebook-based Speech Enhancement (CBSE) operates efficiently in non-stationary noise environments. But, CBSE has some problems that inaccurate gains can be estimated if mismatch occur between input noisy signal and trained speech/noise codevectors. In this paper, the Normalized Weighting Factor (NWF) is calculated by long-term noise estimation algorithm based on Signal-to-Noise Ratio, compensated to the conventional inaccurate gains. The proposed CBSE shows better performance than conventional CBSE.

Learning Input Shaping Control with Parameter Estimation for Nonlinear Actuators (비선형 구동기의 변수추정을 통한 학습입력성형제어기)

  • Kim, Deuk-Hyeon;Sung, Yoon-Gyung;Jang, Wan-Shik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.11
    • /
    • pp.1423-1428
    • /
    • 2011
  • This paper proposes a learning input shaper with nonlinear actuator dynamics to reduce the residual vibration of flexible systems. The controller is composed of an estimator of the time constant of the nonlinear actuator dynamics, a recursive least squares method, and an iterative updating algorithm. The updating mechanism is modified by introducing a vibration measurement function to cope with the dynamics of nonlinear actuators. The controller is numerically evaluated with respect to parameter convergence and control performance by using a benchmark pendulum system. The feasibility and applicability of the controller are demonstrated by comparing its control performance to that of an existing controller algorithm.

Design Polynomial Tuning of Multivariable Self Tuning Controllers (다변수 자기동조 제어기의 설계다항식 조정)

  • Cho, Won-Chul;Shim, Tae-Eun
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.11
    • /
    • pp.22-33
    • /
    • 1999
  • This paper presents the method for the automatic tuning of a design weighting polynomial parameters of a generalized minimum-variance stochastic ultivariable self-tuning controller which adapts to changes in the higher order nonminimum phase system parameters with time delays and noises. The self-tuning effect is achieved through the recursive least square algorithm at the parameter estimation stage and also through the Robbins-Monro algorithm at the stage of optimizing the design weighting polynomial parameters of the controller. The proposed multivariable self-tuning method is simple and effective compared with pole restriction method. The computer simulation results are presented to adapt the higher order multivariable system with nonminimum phase and with changeable system parameters.

  • PDF

Advanced Relative Localization Algorithm Robust to Systematic Odometry Errors (주행거리계의 기구적 오차에 강인한 개선된 상대 위치추정 알고리즘)

  • Ra, Won-Sang;Whang, Ick-Ho;Lee, Hye-Jin;Park, Jin-Bae;Yoon, Tae-Sung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.9
    • /
    • pp.931-938
    • /
    • 2008
  • In this paper, a novel localization algorithm robust to the unmodeled systematic odometry errors is proposed for low-cost non-holonomic mobile robots. It is well known that the most pose estimators using odometry measurements cannot avoid the performance degradation due to the dead-reckoning of systematic odometry errors. As a remedy for this problem, we tty to reflect the wheelbase error in the robot motion model as a parametric uncertainty. Applying the Krein space estimation theory for the discrete-time uncertain nonlinear motion model results in the extended robust Kalman filter. This idea comes from the fact that systematic odometry errors might be regarded as the parametric uncertainties satisfying the sum quadratic constrains (SQCs). The advantage of the proposed methodology is that it has the same recursive structure as the conventional extended Kalman filter, which makes our scheme suitable for real-time applications. Moreover, it guarantees the satisfactoty localization performance even in the presence of wheelbase uncertainty which is hard to model or estimate but often arises from real driving environments. The computer simulations will be given to demonstrate the robustness of the suggested localization algorithm.

Speed Control of Induction Motor using Minimum Variance Control Theory (최소분산제어론을 이용한 유도전동기의 속도제어)

  • 오원석;신태현
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.10 no.5
    • /
    • pp.83-93
    • /
    • 1996
  • In this paper, a minimum variance control system is proposed and practically implemented, which is adequate to the induction motor speed control system with frequent load variation. Minimum variance control method is used as a control law and recursive least square method with selective forgetting factor is proposed and analyzed with general forgetting algorithm as an estimation method. Designed control system is based on PC-DSP structure for the purposed of easiness of applying adaptive algorithm. Through computer simulation and experimental results, it is verified that proposed control system is robust to the load variation and practical implementation is possible.

  • PDF