• 제목/요약/키워드: Rectifier

검색결과 1,315건 처리시간 0.029초

동기 정류기를 이용한 클램프 모드 포워드 영전압 스위칭 다중 공진형 컨버터 (CM Forward ZVS-MRC with Synchronous Rectifier)

  • 안강순;김희준
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 하계학술대회 논문집 A
    • /
    • pp.395-399
    • /
    • 1996
  • The Clamp Mode(CM) Forward Zero Voltage Switching Multi Resonant Converter(ZVS-MRC) with self-driven synchronous rectifier in studied. The loss at the synchronous rectification stage of the converter is analyzed using MOSFET linear model and is compared with the loss at the conventional schottky diode rectification stage of the converter. From the results of the analysis, it is known that the use of MOSFETs as a synchronous rectifier reduces the loss at the rectification stage over the whole load range comparing the use of schottky diodes as a conventional rectifier in the converter. In order to verify the validity of the analysis, we have built a 33W(3.3V/10A) CM Forward ZVS-MRC with self-driven synchronous rectifier, in which switching frequency is 1MHz, and tested. From the experimental results, it is known that the synchronous rectification achieved about 1W improvement in the loss at the rectification stage and about 3% in the efficiency at the converter as compared with the conventional schottky diode rectification.

  • PDF

Step-up and Step-down Asymmetrical 24-Pulse Autotransformer Rectifier

  • Zhang, Lu;Ge, Hong-juan;Jiang, Fan;Yang, Guang;Lin, Yi
    • Journal of Power Electronics
    • /
    • 제18권5호
    • /
    • pp.1536-1544
    • /
    • 2018
  • The existing 24-pulse autotransformer rectifier unit (ATRU) needs interphase reactors for parallel work of the rectifier bridges, and its output voltage cannot be regulated. Aiming at these problems, a step-up and step-down asymmetrical 24-pulse ATRU is proposed in this paper. The connections and turns ratios among transformer windings are well designed. In addition, a 15-degree phase difference is formed between two of the 24 voltage vectors produced by the transformer, which makes the four rectifier bridge groups produce a 24-pulse DC voltage without interphase reactors. Meanwhile, by adding extended winding to each phase of the transformer, wide-range regulation of the ATRU output voltage can be realized, and the reasonable voltage regulation range is between 0.2 and 1.6. The superposition of the voltage vectors and the principle of the voltage regulation are analyzed in detail. Furthermore, the turns ratio of the windings, winding current, output voltage, and kilovolt-ampere rating are all derived. Finally, the simulations and experiments are carried out, and the correctness of the principle and theoretical analysis of the new 24-pulse ATRU are verified.

Three-Phase Three-Switch Buck-Type Rectifier Based on Current Source Converter for 5MW PMSG Wind Turbine Systems

  • Chae, Beomseok;Suh, Yongsug;Kang, Tahyun
    • Journal of Power Electronics
    • /
    • 제18권5호
    • /
    • pp.1501-1512
    • /
    • 2018
  • This paper proposes a three-phase three-switch buck-type converter as the MSC of a wind turbine system. Owing to a novel switching modulation scheme that can eliminate the unwanted diode rectifier mode switching state, the proposed system exhibits a satisfying ac voltage and current waveform quality and torque ripple up to the level of a typical current source rectifier even under a wide power factor operating range. The proposed system has been verified through simulations and HILS tests on a PMSG wind turbine model of 5MW/4160V. The proposed converter has been shown to provide a stator current THD of 3.9% and a torque ripple of 1% under the rated power condition. In addition to the inherent advantage of the reduced switch count of three-phase three-switch buck-type converters, the proposed switching modulation technique can make this converter a viable solution for the MSC placed inside of a nacelle, which is under severe volume, weight and mechanical vibration design limits.

3상 다이오드정류기의 고조파 저감을 위한 CPLD 컨트롤러의 개발 (The Development of CPLD Controller for Reducing Harmonics of 3 Phase Diode Rectifier)

  • 김병진;박종찬;손진근;임병국;전희종
    • 조명전기설비학회논문지
    • /
    • 제14권3호
    • /
    • pp.43-48
    • /
    • 2000
  • 본 연구에서는 VHDL로 설계한 CPLD 제어기를 이용하여 3상 다이오드 정류기 입력전류에 포함된 고조파성분을 저감시켰다. 3상 다이오드는 매 순간 3상중에서 가장 높은 장에서 가장 낮은 장으로 전류가 흐르게 되므로 나머지 한 장의 전류가 불연속적이 된다. 개발된 CPID 제어기는 다어오드로 도통되지 않는 상의 전류를 부가적으로 설치한 스위치를 통하여 흐르게 하여 전류가 연속으로 도통되게 한다. CPLD 제어기는 기존의 디지털 프로세서를 이용한 제어기에 비해 고속의 처리능력과 소형화획 장점 등을 가점을 확인하였다. 시뮬레이션과 실험결과로 제안된 제어기의 성능을 검증하였다.

  • PDF

Interleaved ZVS Resonant Converter with a Parallel-Series Connection

  • Lin, Bor-Ren;Shen, Sin-Jhih
    • Journal of Power Electronics
    • /
    • 제12권4호
    • /
    • pp.528-537
    • /
    • 2012
  • This paper presents an interleaved resonant converter with a parallel-series transformer connection in order to achieve ripple current reduction at the output capacitor, zero voltage turn-on for the active switches, zero current turn-off for the rectifier diodes, less voltage stress on the rectifier diodes, and less current stress on the transformer primary windings. The primary windings of the two transformers are connected in parallel in order to share the input current and to reduce the root-mean-square (rms) current on the primary windings. The secondary windings of the two transformers are connected in series in order to ensure that the transformer primary currents are balanced. A full-wave diode rectifier is used at the output side to clamp the voltage stress of the rectifier diode at the output voltage. Two circuit modules are operated with the interleaved PWM scheme so that the input and output ripple currents are reduced. Based on the resonant behavior, all of the active switches are turned on under zero voltage switching (ZVS), and the rectifier diodes are turned off under zero current switching (ZCS) if the operating switching frequency is less than the series resonant frequency. Finally, experiments with a 1kW prototype are described to verify the effectiveness of the proposed converter.

커패시터 필터를 갖는 3상 다이오드 정류회로의 불평형전원에서의 입력전류 특성 (Input Current Characteristics of a Three-Phase Diode Rectifier with Capacitive Filter under Line Voltage Unbalance Condition)

  • 정승기;이동기;박기원
    • 전력전자학회논문지
    • /
    • 제6권4호
    • /
    • pp.348-361
    • /
    • 2001
  • 커패시터 필터를 갖는 3 상 다이오드 정류회로는 입력전압의 불평형에 매우 민감한 특성을 가지고 있다. 이러한 정류회로는 그 동작의 비선형성으로 인해 작은 전압의 불평형에도 입력전류에는 큰 불평형이 나타날 수 있으며 이로 인해 전원품질에 악영향을 미친다. 본 논문에서는 이러한 불평형 증폭특성을 이론적으로 규명하고 불평형 정도에 따른 정류회로의 동작모드에 따라 재반 입력전류의 특성에 대한 모델을 도출하였다. 본 논문의 결과는 각종 전력변환 장치의 입력부로서 널리 사용되는 커패시터 필터형 3상 다이오드 정류회로를 최적 설계하는 데에 중요한 해석적 기초를 제공하고 있다.

  • PDF

Analysis and Control of a Modular MV-to-LV Rectifier based on a Cascaded Multilevel Converter

  • Iman-Eini, Hossein;Farhangi, Shahrokh;Khakbazan-Fard, Mahboubeh;Schanen, Jean-Luc
    • Journal of Power Electronics
    • /
    • 제9권2호
    • /
    • pp.133-145
    • /
    • 2009
  • In this paper a modular high performance MV-to-LV rectifier based on a cascaded H-bridge rectifier is presented. The proposed rectifier can directly connect to the medium voltage levels and provide a low-voltage and highly-stable DC interface with the consumer applications. The input stage eliminates the necessity for heavy and bulky step-down transformers. It corrects the input power factor and maintains the voltage balance among the individual DC buses. The second stage includes the high frequency parallel-output DC/DC converters which prepares the galvanic isolation, regulates the output voltage, and attenuates the low frequency voltage ripple ($2f_{line}$) generated by the first stage. The parallel-output converters can work in interleaving mode and the active load-current sharing technique is utilized to balance the load power among them. The detailed analysis for modeling and control of the proposed structure is presented. The validity and performance of the proposed topology is verified by simulation and experimental results.

Model Predictive Power Control of a PWM Rectifier for Electromagnetic Transmitters

  • Zhang, Jialin;Zhang, Yiming;Guo, Bing;Gao, Junxia
    • Journal of Power Electronics
    • /
    • 제18권3호
    • /
    • pp.789-801
    • /
    • 2018
  • Model predictive direct power control (MPDPC) is a widely recognized high-performance control strategy for a three-phase grid-connected pulse width modulation (PWM) rectifier. Unlike those of conventional grid-connected PWM rectifiers, the active and reactive powers of permanent magnet synchronous generator (PMSG)-connected PWM rectifiers, which are used in electromagnetic transmitters, cannot be calculated as the product of voltage and current because the back electromotive force (EMF) of the generator cannot be measured directly. In this study, the predictive power model of the rectifier is obtained by analyzing the relationship among flux, back EMF, active/reactive power, converter voltage, and stator current of the generator. The concept of duty cycle control in the proposed MPDPC is introduced by allocating a fraction of the control period for a nonzero vector and rest time for a zero vector. When nonzero vectors and their duration in the predefined cost function are simultaneously evaluated, the global power ripple minimization is obtained. Simulation and experimental results prove that the proposed MPDPC strategy with duty cycle control for the PMSG-connected PWM rectifier can achieve better control performance than the conventional MPDPC-SVM with grid-connected PWM rectifier.

전철용 공랭식 정류기 성능 향상방안에 관한 연구 (Research on improvement performance of air-cooled rectifier for Electric railway)

  • 한학수;최병운;배상만;김찬식;김영은
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2009년도 춘계학술대회 논문집
    • /
    • pp.1489-1497
    • /
    • 2009
  • The rectifier for Electric railway is one of the most important facilities in DC urban railway which converts power from KEPCO(AC 22.9kV) to the electric mil car(DC 1.5kV), therefore it should be managed as the best condition for the drive. There are several things to cause performance degradation and deterioration of parts such as pollutants occurred by it established under the ground such as dust or foreign substances, rapid changes of driving current, and pyrogen which put the rectifier for Electric railway in malfunction. On the flow of time, the rectifier for Electric railway is causing a malfunction or failure which drive electric rail car in operations as well as loss of life. In this research we try to find the way of removing the various components of mal-functions in the performance of the rectifier for Electric railway by Over-Haul and reform itself, which gives us to get the chance investment of the reduction, the reliability of power supply to the electric rail car.

  • PDF

LCD 모듈 검사장비용 LED 백라이트 드라이브 시스템을 위한 고효율 반브리지 직류-직류 전력변환기 (High Efficiency Half-bridge DC-DC Converter for an LED Backlight Drive System of LCD Module Inspection Equipment)

  • 유두희;정강률
    • 제어로봇시스템학회논문지
    • /
    • 제14권6호
    • /
    • pp.535-542
    • /
    • 2008
  • This paper presents a high efficiency half-bridge DC-DC converter for an LED backlight drive system of LCD module inspection equipment. The proposed converter improves the converter efficiency using characteristics of the asymmetrical half-bridge converter and the self-driven synchronous rectifier, and thus improves the total efficiency of the LED backlight drive system. The synchronous rectifier applied to the proposed converter is the new topological synchronous rectifier, which changes slightly the transformer structure and the synchronous switch connection in the asymmetrical half-bridge converter with a conventional self-driven synchronous rectifier. Since the proposed converter utilizes the transformer leakage inductor as its resonant inductor, its structure is simplified. The proposed converter well operates under the universal DC input voltage ($250{\sim}380V$). The operational principle and a design example for a 100W prototype are discussed in detail, respectively. Experimental results are shown for the designed prototype converter under universal DC input voltage.