Browse > Article
http://dx.doi.org/10.6113/JPE.2018.18.3.789

Model Predictive Power Control of a PWM Rectifier for Electromagnetic Transmitters  

Zhang, Jialin (Faculty of Information, Beijing University of Technology)
Zhang, Yiming (Faculty of Information, Beijing University of Technology)
Guo, Bing (Faculty of Information, Beijing University of Technology)
Gao, Junxia (Faculty of Information, Beijing University of Technology)
Publication Information
Journal of Power Electronics / v.18, no.3, 2018 , pp. 789-801 More about this Journal
Abstract
Model predictive direct power control (MPDPC) is a widely recognized high-performance control strategy for a three-phase grid-connected pulse width modulation (PWM) rectifier. Unlike those of conventional grid-connected PWM rectifiers, the active and reactive powers of permanent magnet synchronous generator (PMSG)-connected PWM rectifiers, which are used in electromagnetic transmitters, cannot be calculated as the product of voltage and current because the back electromotive force (EMF) of the generator cannot be measured directly. In this study, the predictive power model of the rectifier is obtained by analyzing the relationship among flux, back EMF, active/reactive power, converter voltage, and stator current of the generator. The concept of duty cycle control in the proposed MPDPC is introduced by allocating a fraction of the control period for a nonzero vector and rest time for a zero vector. When nonzero vectors and their duration in the predefined cost function are simultaneously evaluated, the global power ripple minimization is obtained. Simulation and experimental results prove that the proposed MPDPC strategy with duty cycle control for the PMSG-connected PWM rectifier can achieve better control performance than the conventional MPDPC-SVM with grid-connected PWM rectifier.
Keywords
Direct power control; Electromagnetic transmitter; Model predictive control; Permanent magnet synchronous generator;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 J. A. Restrepo, J. M. Aller, J. C. Viola, A. Bueno, and T. G. Habetler, “Optimum space vector computation technique for direct power control,” IEEE Trans. Power Electron., Vol. 24, No. 6, pp. 1637-1645, Jun. 2009.   DOI
2 M. Malinowski, M. Jasinski, and M. P.Kazmierkowski, “Simple direct power control of three-phase PWM rectifier using space-vector modulation (DPC-SVM),” IEEE Trans. Ind. Electron., Vol. 51, No. 2, pp. 447-454, Apr. 2009.
3 J. Restrepo, J. Viola, J. M. Aller, and A. Bueno, "A simple switch selection state for SVM direct power control," in Proc. ISIE, pp. 1112-1116, 2006.
4 T. Geyer, G. Papafotiou, and M. Morari, “Model predictive direct torque control - Part I: Concept, algorithm, and analysis,” IEEE Trans. Ind. Electron., Vol. 56, No. 6, pp. 1894-1905, Jun. 2009.   DOI
5 M. Preindl and S.Bolognani, “Model predictive direct torque control with finite control set for PMSM drive systems, part 2: Field weakening operation,” IEEE Trans. Ind. Inform., Vol. 9, No. 2, pp. 648-657, May. 2013.   DOI
6 M. Pacas, J. Weber, “Predictive direct torque control for the PM synchronous machine,” IEEE Trans. Ind. Electron., Vol. 52, No. 5, pp. 1350-1356, Oct. 2005.   DOI
7 A. Bouafia, J. P. Gaubert, and F. Krim, “Predictive direct power control of three-phase pulsewidth modulation (PWM) rectifier using space-vector modulation (SVM),” IEEE Trans. Power Electron., Vol. 25, No. 1, pp. 228-236, Jan. 2010.   DOI
8 P. Cortes, J. Rodriguez, P. Antoniewicz, and M. Kazmierkowski, “Direct power control of an AFE using predictive control,” IEEE Trans. Power Electron., Vol. 23, No. 5, pp. 2516-2523, Jan. 2008.   DOI
9 D. E. Quevedo, R. P. Aguilera, M. A. Perez, P. Cortes, and R. Lizana, “Model predictive control of an AFE rectifier with dynamic references,” IEEE Trans. Power Electron., Vol. 27, No. 7, pp. 3128-3136, Jul. 2012.   DOI
10 J. G. Norniella, J. M. Cano, G. A. Orcajo, C. H. R. Garcia, J. F. Pedrayes, M. F. Cabanas, and M. G. Melero, “Analytic and iterative algorithms for online estimation of coupling inductance in direct power control of three-phase active rectifiers,” IEEE Trans. Power Electron., Vol. 26, No. 11, pp. 3298-3307, Nov. 2011.   DOI
11 A. M. Razali, M. A. Rahman, G. George, and N. A. Rahim, "Analysis and design of new switching lookup table for virtual flux direct power control of grid-connected three-phase PWM AC-DC converter," IEEE Trans. Ind. Appl., Vol. 51, No. 2, pp. 1189-1200, Mar./Apr. 2015.   DOI
12 Y. Cho and K. B. Lee, “Virtual-flux-based predictive direct power control of three-phase PWM rectifiers with fast dynamic response,” IEEE Trans. Power Electron., Vol. 31, No. 4, pp. 3348-3359, Apr. 2016.   DOI
13 Y. Zhang, W. Xie, Z. Li, and Y. Zhang, “Model predictive direct power control of a PWM rectifier with duty cycle optimization,” IEEE Trans. Power Electron., Vol. 28, No. 11, pp. 5343-5351, Nov. 2013.   DOI
14 Y. Zhang, D. Xu, J. Liu, S. Gao, and W. Xue, “Performance improvement of model predictive current control of permanent magnet synchronous motor drives,” IEEE Trans. Ind. Appl., Vol. 53, No. 4, pp. 3683-3695, Jul./Aug. 2017.   DOI
15 P. Antoniewicz and M. P. Kazmierkowski, "Virtual-flux-based predictive direct power control of AC/DC converters with online inductance estimation," IEEE Trans. Ind. Electron., Vol. 55, No. 12, pp. 4381-4390, Dec. 2008.   DOI
16 D. Zhi, L. Xu, and B. W. Williams, “Improved direct power control of grid-connected DC/AC converters,” IEEE Trans. Power Electron., Vol. 24, No. 5, pp. 1280-1292, May 2009.   DOI
17 Q. Zhen, Q. Di, and H. Liu, “Key technology study on CSAMT transmitter with excitation control,” Chinese J. Geophysics, Vol. 56, No. 11, pp. 3751-3760, Nov. 2013.
18 Q. Y. Jiang, "Study on the key technology of wide field electromagnetic sounding instrument," Ph.D. Thesis, Central South University, Changsha, China, 2010.
19 K. Xue, S. Wang, J. Lin, G. Li, and F. Zhou, “Loss analysis and air-cooled design for a cascaded electrical source transmitter,” J. Power Electron., Vol. 12, No. 5, pp. 530-543, Mar. 2015.
20 F. Yu and Y. Zhang, “Modeling and control method for high-power electromagnetic transmitter power supplies,” J. Power Electron., Vol. 13, No. 4, pp. 679-691, Jul. 2013.   DOI
21 X. Z. Zhu, "Based on the soft switch technology research and implementation of high-power electromagnetic transmitter," Master Thesis, Beijing University of Technology, Beijing, China, 2016.
22 J. R. Rodriguez, J. W. Dixon, J. R. Espinoza, J. Pontt, and P. Lezana, “PWM regenerative rectifiers: State of the art,” IEEE Trans. Ind. Electron., Vol. 52, No. 1, pp. 5-22, Feb. 2005.   DOI
23 B. Yin, R. Oruganti, S. K. Panda, and A. K. Bhat, “An output-power-control strategy for a three-phase PWM rectifier under unbalanced supply conditions,” IEEE Trans. Ind. Electron., Vol. 55, No. 5, pp. 2140-2151, May 2008.   DOI
24 X. H. Wu, S. K. Panda, and J. X. Xu, “DC link voltage and supply-side current harmonicsminimization of three phase PWM boostrectifiers using frequency domain based repetitive current controllers,” IEEE Trans. Power Electron., Vol. 23, No. 4, pp. 1987-1997, Jul. 2008.   DOI
25 W. Wang and X. Xi, "Current control method for PMSM with high dynamic performance," in Conf. IEMDC, pp. 1249-1254, 2013.
26 M. H. Shin, D. S. Hyun, S. B. Cho, and S. Y. Choe, “An improved stator flux estimation for speed sensorless stator flux orientation control of induction motors,” IEEE Trans. Power Electron., Vol. 15, No. 2, pp. 312-318, Mar. 2000.   DOI
27 M. Hinkkanen and J. Luomi, “Modified integrator for voltage model flux estimation of induction motors,” IEEE Trans. Ind. Electron., Vol. 50, No. 4, pp. 818-820, Aug. 2003.   DOI
28 P. Cortes, J. Rodriguez, C. Silva, and A. Flores, “Delay compensation in model predictive current control of a three-phase inverter,” IEEE Trans. Ind. Electron., Vol. 59, No. 2, pp. 1323-1325, Feb. 2012.   DOI
29 T. Noguchi, H. Tomiki, S. Kondo, and I. Takahashi, "Direct power control of PWM converter without power-source voltage sensors," IEEE Trans. Ind. Appl., Vol. 34, No. 3, pp. 473-479, May/Jun. 1998.   DOI
30 C. K. Lin, T. H. Liu, L. C. Fu, and C. F. Hsiao, "Model-free predictive current control for interior permanent-magnet synchronous motor drives based on current difference detection technique," IEEE Trans. Ind. Electron., Vol. 61, No. 2, pp. 667-681, Feb. 2014.   DOI
31 G. Escobar, A. M. Stankovic, J. M. Carrasco, E. Galvan, and R. Ortega, “Analysis and design of direct power control (DPC) for a three phase synchronous rectifier via output regulation subspaces,” IEEE Trans. Power Electron., Vol. 18, No. 3, pp. 823-830, May 2003.   DOI
32 M. Malinowski, M. P. Kazmierkowski, S. Hansen, F. Blaabjerg, and G. D. Marques, “Virtual-flux-based direct power control of three-phase PWM rectifiers,” IEEE Trans. Ind. Appl., Vol. 37, No. 4, pp. 1019-1027, Jul./Aug. 2001.   DOI
33 Y. Zhang, Z Li, Y. Zhang, W. Xie, Z. Piao, and C. Hu, “Performance improvement of direct power control of PWM rectifier with simple calculation,” IEEE Trans. Power Electron., Vol. 28, No. 7, pp. 3428-3437, Jul. 2013.   DOI
34 A. M. Razali, M. A. Rahman, G. George, and A. R. Nasrudin, “Analysis and design of new switching lookup table for virtual flux direct power control of grid-connected three-phase PWM AC-DC converter,” IEEE Trans. Ind. Appl., Vol. 51, No. 2, pp. 1189-1200, Mar./Apr. 2015.   DOI
35 A. Bouafia, F. Krim, and J. P. Gaubert, “Fuzzy-logic-based switching state selection for direct power control of three-phase PWM rectifier,” IEEE Trans. Ind. Electron., Vol. 56, No. 6, pp. 1984-1992, Jun. 2009.   DOI
36 J. Yang, W. Zheng, S. Li, B. Wu, and M. Cheng, “Design of a prediction-accuracy-enhanced continuous-time MPC for distuibed systems via a disturbance observer,” IEEE Trans. Ind. Electron., Vol. 62, No. 9, pp. 5807-5816, Sep. 2015.   DOI
37 J. Yang, H. Cui, S. Li, and A. Zolotas, “Optimized active disturbance rejection control for DC-DC buck converters with uncertainties using a reduced-order GPI observer,” IEEE Trans. Circuits Syst. I, Reg. Papers, Vol. 65, No. 2, pp. 832-841, Feb. 2018.   DOI