• Title/Summary/Keyword: Rectenna RF-DC conversion efficiency

Search Result 15, Processing Time 0.033 seconds

A study on the Properties of RF-DC Conversion Efficiency for the Dual-Polarization (이중편파 정류안테나의 RF-DC 변환효율 특성 분석)

  • 유동기;박양하;김관호;이영철
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.3A
    • /
    • pp.435-442
    • /
    • 2000
  • In this paper, we analyzed RF-DC conversion efficiency for the dual -polarization rectenna and the antenna position changing. Dual-Polarization rectenna consist of a two major parts, receiving antenna and rectifying circuits. We made dual-polarization 2.45GHz rectenna using the two dipole antennas and patch antenna. Rectifying circuit is consisted by a Schottky-Barrier diode with a large forward current and reverse breakdown voltage. The results of RF-DC conversion efficiency for the each of designed dual-polarization rectenna has 69.1% with 360$\Omega$(dipole type) and 75.4% with 340$\Omega$(patch type ) optimum load resistor. When the each of dual-polarization rectenna has optimal load resistor, it's conversion efficiency shows of $\pm$20% in dipole type and $\pm$5 in patch type at 0~180。position.

  • PDF

Analysis of RF-DC Conversion Efficiency of Composite Multi-Antenna Rectifiers for Wireless Power Transfer

  • Deng, Chao;Huang, Kaibin;Wu, Yik-Chung;Xia, Minghua
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.10
    • /
    • pp.5116-5131
    • /
    • 2017
  • This paper studies the radio frequency to direct current (RF-DC) conversion efficiency of rectennas applicable to wireless power transfer systems, where multiple receive antennas are arranged in serial, parallel or cascaded form. To begin with, a 2.45 GHz dual-diode rectifier is designed and its equivalent linear model is applied to analyze its output voltage and current. Then, using Advanced Design System (ADS), it is shown that the rectifying efficiency is as large as 66.2% in case the input power is 15.4 dBm. On the other hand, to boost the DC output, three composite rectennas are designed by inter-connecting two dual-diode rectifiers in serial, parallel and cascade forms; and their output voltage and current are investigated using their respective equivalent linear models. Simulation and experimental results demonstrate that all composite rectennas have almost the same RF-DC conversion efficiency as the dual-diode rectifier, yet the output of voltage or current can be significantly increased; in particular, the cascade rectenna obtains the highest rectifying efficiency.

Design and Fabrication of Rectenna for Microwave Wireless Power Transmission (마이크로파 무선전력전송을 위한 렉테나 설계와 구현)

  • Park, Jeong-Heum
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.6
    • /
    • pp.43-48
    • /
    • 2006
  • In this paper, the rectenna converting 2.45[GHz] microwave into DC power is designed and fabricated for wireless power transmission using microwave and the methode for impedance matching and tuning are proposed in order to maximize RF-DC conversion efficiency. The fabricated rectenna can be easily tuned by using a broad open stub and has the RF-DC conversion efficiency up to 59[%] when the 5[dBm] input power is applied. The 2.2[V], 1.5[mW] DC level, in the 1[m] distance between the transmitter and the receiver can be obtained and this value is avaliable in the small power digital system.

A study on the RF-DC Conversion Efficiency of Microstrip Patch Rectenna (Microstrip Patch 형 Rectenna의 변환효율 분석에 관한 연구)

  • Park, Yang-Ha;Youn, Dong-Gi;Kim, Kwan-Ho;Rhee, Young-Chul
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.2177-2179
    • /
    • 2000
  • We designed and manufactured micros trip patch antenna mainly used in the Rectenna and then analysed RF-DC conversion efficiency of wireless power transmission system. We analyse conversion efficiency of load, direction of linear and dual polization rectenna. We found that the maximum efficiency would be about 70% of load and direction in patch type. In conclusion, we found that total conversion efficiency is 64%$\sim$71% in patch Rectenna.

  • PDF

A Study on the Conversion Efficiency of Rectenna for Microwave Wireless Power Transmission System (Rectenna의 형태와 방향변화에 따른 변환효율 분석에 관한 연구)

  • 윤동기;박양하김관호이영철
    • Proceedings of the IEEK Conference
    • /
    • 1998.06a
    • /
    • pp.189-192
    • /
    • 1998
  • In this paper, we analyzed Microwave-DC conversion efficiency for the rectennas and it's position change. Rectenna consist of a two major parts, receiveing antenna and rectifying circuits. We made two types of 2.45C rectennas which the dipole and the patch antenna. Rectifying circuit is a GaAs-schottky diode with a large forward current and reverse breakdown voltage. The results of RF-DC conversion efficiency for two rectennas, patch type has 75.6% efficiency with 400$\Omega$ load resistor and dipole type has 69.75% efficiency with 360$\Omega$ load resistor. When the rectennas has optimal load resistor, Rectenna efficiency shows of $\pm10%$ at $70^{\circ}$~$110^{\circ}$ position.

  • PDF

A Highly Efficient Rectenna Using Harmonic Rejection Capability

  • Kim, Youg-Hwan;Lim, Sung-Joon
    • Journal of electromagnetic engineering and science
    • /
    • v.11 no.4
    • /
    • pp.257-261
    • /
    • 2011
  • A highly efficient 2.4 GHz rectenna is designed using a harmonic rejection bandpass filter. The rectenna is printed on Rogers Duroid 5880 substrate with ${\varepsilon}_r$=2.2 and a thickness of 1.6 mm. The rectenna consists of a microstrip antenna and high order harmonic rejection bandpass filter, microstrip lowpass filter, and Schottky barrier diode (HSMS2820). The use of a $2^{nd}$ and $3^{rd}$ harmonic rejection microstrip bandpass filter in the rectenna results in high conversion efficiency. The proposed rectenna achieves a RF to DC conversion efficiency of 72.17 % when the received RF power is 63.09 mW.

A Broad-band Rectenna Using Stub Filter (스터브 필터를 이용한 광대역 렉테나 설계)

  • Oh, Kyoung-Min;Lee, Hyun-Wook;Nam, Hee;Yoon, Ki-Cheol;Hong, Tae-Ui;Lee, Dae-Sung;Hwang, Hak-In;Lee, Jong-Chul
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.7 no.4
    • /
    • pp.86-96
    • /
    • 2008
  • In this paper, a new broadband rectenna is presented for the wireless transmission of microwave power. The new broadband rectenna element is based on a new printed monopole broadband antenna with size reduction using surface current distribution and a new broadband stub bandpass filter with suppression of second harmonics. A RF-to-DC conversion efficiency of 80% using a 270 ohm load resistor is obtain at 2.45 GHz. Also, a conversion efficiency of above 50 % is maintained from 1.8 GHz to 2.8 GHz.

  • PDF

A Study on the Conversion Efficiency of Rectenna using Dual-Polarization and FSS Method (이중편파와 FSS를 적용한 정류안테나의 변환효율 분석에 관한 연구)

  • 윤동기;박양하;김관호;이영철
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.10 no.5
    • /
    • pp.747-756
    • /
    • 1999
  • In this paper, we analyzed microwave-DC conversion efficiency for the dual-polarization rectenna and antenna position changing. And then we analyzed and applied Square-Loop FSS structure for reducing the diode harmonic components as a rectifying circuit. The results of microwave-DC conversion efficiency for the each of designed dual-polarization rectenna has 69.1% with $360\Omega$ (dipole type) and 75.4% with $340\Omega$ (patch type) optimum load resistor. When the each of dual-polarization rectenna has a optimal load resistor, it's conversion efficiency shows of $\pm$20% in dipole type and $\pm$5% in patch type at $0~180^{\circ}$position. When applied Square-Loop FSS structure for Rectenna, Insertion loss was under 1 dB as the passband and over 20 dB as the stopband. The microwave -DC conversion efficiency was represented good properties of $\pm$2% variation.

  • PDF

Design and analysis of RF-DC power conversion circuit (무선 전력변환장치의 전력변환 회로에 대한 설계 및 분석)

  • Kim, Yong-Sang;Im, Sang-Uk;Lee, Yong-Je;Kim, Yang-Mo
    • Proceedings of the KIEE Conference
    • /
    • 2003.11b
    • /
    • pp.35-42
    • /
    • 2003
  • We have studied DC energy conversion of RF card by wireless communication. In order to attain an objective, it used the system which is a Rectenna. The main purpose of energy conversion system is the operation of the circuits at RF-ID system. The proposed RF-ID system is a lot classified with the reader and tag. Reader is a kind of the base station role supporting RF energy. And priority tag convert RF energy from the reader it was delivered with a wireless to DC energy. The energy which is converted like Tag. It transmits to the reader characteristic ID of each card. The tag is mainly divided into rectifier, power module, memory and controller. The FRAM maintains the data like a ROM in no-power situation. And the advantage is a low power element compared with other EEPROM. There are two considerations, when RF energy is converted into DC source by wireless. One is energy amount supported from the reader, the other is high power efficiency. This paper presents a study of simulation and experiments on the RF-DC conversion circuit in tag by the power efficiency concentrated.

  • PDF