• Title/Summary/Keyword: Recovery of ethanol

Search Result 173, Processing Time 0.027 seconds

Effects of Ixeris Sonchifolia H. Fiet on Lipid Metabolism and Liver Function of Rats Administered with Ethanol (고들빼기 첨가 식이가 알콜투여 흰쥐의 지방대사와 간기능에 미치는 영향)

  • 손희숙;정복미;차연수
    • Journal of Nutrition and Health
    • /
    • v.34 no.5
    • /
    • pp.493-498
    • /
    • 2001
  • To investigate the effects of Ixeris sonchifolia Hance diets on serum and hepatic lipid levles and enzyme activities in rats administered with ethanol chronically, Sprague-Dawley male rats were AIN-76 diet(control), control diet plus ethanol, control plus Ixeris sonchifolia Hance diet, or control plus Ixeris sonchifolia Hance diet plus ethanol for 30 days. Ixeris sonchifolia Hance diets significantly decreased the serum total cholesterol, triglyceride, LDL-cholesterol, and GOT levels that were increased due to the chronic ethanol administration. In addition, Ixeris sonchifolia Hance diets significantly decreased the liver triglyceride and total lipid levels that were increased due to the ethanol administration. The present findings, combined with previous data showing differences in the effects of cabbage diets having a high or a low level of GABA on the lipid levels and the serum Y-GPT activity of rats(Cha and OH[2000] J. Korean Soc. Food Sci. Nutr. 29, 500-505) raise the possibility that GABA in plants could have a nytraceutical role in the recovery of chronic alcohol-related diseases. (Korean J Nutrition 34(5) : 493∼498, 2001)

  • PDF

Recovery of Acetic Acid from An Ethanol Fermentation Broth by Liquid-Liquid Extraction (LLE) Using Various Solvents

  • Pham, Thi Thu Huong;Kim, Tae Hyun;Um, Byung-Hwan
    • Korean Chemical Engineering Research
    • /
    • v.53 no.6
    • /
    • pp.695-702
    • /
    • 2015
  • Liquid-liquid extraction (LLE) using various solvents was studied for recovery of acetic acid from a synthetic ethanol fermentation broth. The microbial fermentation of sugars presented in hydrolyzate gives rise to acetic acid as a byproduct. In order to obtain pure ethanol for use as a biofuel, fermentation broth should be subjected to acetic acid removal step and the recovered acetic acid can be put to industrial use. Herein, batch LLE experiments were carried out at $25^{\circ}C$ using a synthetic fermentation broth comprising $20.0g\;l^{-1}$ acetic acid and $5.0g\;l^{-1}$ ethanol. Ethyl acetate (EtOAc), tri-n-octylphosphine oxide (TOPO), tri-n-octylamine (TOA), and tri-n-alkylphosphine oxide (TAPO) were utilized as solvents, and the extraction potential of each solvent was evaluated by varying the organic phase-to-aqueous phase ratios as 0.2, 0.5, 1.0, 2.0, and 4.0. The highest acetic acid extraction yield was achieved with TAPO; however, the lowest ethanol-to-acetic acid extraction ratio was obtained using TOPO. In a single-stage batch extraction, 97.0 % and 92.4 % of acetic acid could be extracted using TAPO and TOPO when the ratio of organic-to-aqueous phases is 4:1 respectively. A higher solvent-to-feed ratio resulted in an increase in the ethanol-to-acetic acid ratio, which decreased both acetic acid purity and acetic acid extraction yield.

Recovery of Milk Mineral from Concentrated Skim Milk Ultrafiltration Permeate (농축 탈지유 한외여과액으로부터 우유미네럴의 회수)

  • Lim, Kwangsei;Oh, Sejong;Park, Dong June;Imm, Jee-Young
    • Journal of Dairy Science and Biotechnology
    • /
    • v.33 no.2
    • /
    • pp.153-157
    • /
    • 2015
  • Milk mineral, which is also called milk calcium, was recovered from concentrated skim milk ultrafiltration permeate (CUFP). Lactose, the major constituent of CUFP, was crystallized by the addition of ethanol; lactose precipitation was observed to increase as the ratio of CUFP to ethanol increased. The calcium content of CUFP remained constant at a CUFP to ethanol ratio of 1:2, while it significantly decreased at a CUFP to ethanol ratio of 1:4. When ethanol (95%, v/v) was reused to precipitate lactose out of CUFP, 85% of the initial lactose precipitated out, while 82% of calcium remained soluble in the CUFP after storage for 24 h.

  • PDF

The sensing characteristics of MOPS structure based on porous silicon for ethanol gas (다공질규소를 이용한 MOPS 구조의 에탄올 감지 특성)

  • Sohn, Sihn-Young;Kim, Han-Jung;Lee, Ki-Won;Kim, Young-You
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.6
    • /
    • pp.457-461
    • /
    • 2006
  • To use the porous silicon as gas sensors, we made the MOPS structure from the porous silicon with Al evaporation and investigated the sensing characteristic of ethanol. When the MOPS structure is in contact with ethanol gas, the maximum peak of PL changes and it return to original intensity without contact. The MOPS structure had response time 0.78s and recovery time 4.13s when it is in contact with ethanol, which satisfied the required sensor standards. Further complimentary researches, however, are required to investigate the contact mechanism between MOPS structure and ethanol and to solve the surface contamination problem.

Effect of Environmental Factors on By-products Production in Ethanol Fermentation (에탄올 발효에서 부산물 생성에 미치는 환경인자의 영향)

  • 김진현;유영제
    • KSBB Journal
    • /
    • v.8 no.5
    • /
    • pp.446-451
    • /
    • 1993
  • In ethanol fermentation, by-products such as glycerol, acetic acid and lactic acid are produced along with ethanol. The effects of culture conditions on cell growth ethanol production and by-products biosynthesis were investigated in ethanol fermentation using S. cerevisiae. With increasing aeration rate or yeast extract concentration, ethanol and by-products biosynthesis decreased while final cell mass increased. With increasing glucose concentration or decreasing temperature, final cell mass, ethanol and by-products concentrations all increased. The optimal pH for the cell growth, ethanol and by-products productions was found to be pH 4.5. By-products biosynthesis was found, in general, to proceed with the ethanol biosynthesis. The results can be applied for the optimization of ethanol fermentation and for the recovery and purification of ethanol from the culture broth.

  • PDF

Recovery and Characterization of Lactic Acid from Fermentation Broth Using Chemical Precipitation (화학침전을 이용한 발효액의 젖산 회수 및 유기물 특성분석)

  • Lee, Wontae
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.26 no.1
    • /
    • pp.47-53
    • /
    • 2018
  • Recovery of lactic acid from fermentation broth using chemical precipitation was investigated with various chemicals. Effects of chemical types, mixing speeds, settling duration, and solvent addition were evaluated to improve the recovery rates of lactic acid. Overall, recovery efficiencies increased as the dosage of chemicals increased. Recovery rate of lactic acid by CaO was higher than those of $Ca(OH)_2$ and $CaCO_3$. Recovery of lactic acid increased by 48% under the optimized reaction conditions which included a mixing speed at 180 rpm, a settling duration of 24 h, and addition of ethanol at 25%(v/v). Practical application needs to consider types and concentrations of other organic acids as well as lactic acid. Based upon the results of fluorescence excitation emission matrix (FEEM), size exclusion chromatography (SEC), characteristics of recovered lactic acid were same as that in the fermentation broth.

Effect of Clarification by Ethanol on Physicochemical Properties of Red Ginseng Extract (에탄올에 의한 청징이 RG-Ext.의 이화학적 특성에 미치는 영향)

  • Kim, Na-Mi;Yang, Jai-Won;Kim, Woo-Jung;Lee, Jong-Soo
    • The Journal of Natural Sciences
    • /
    • v.4
    • /
    • pp.69-83
    • /
    • 1991
  • To determine optimum ethanol concentration and clarification time in ethanol clarification of red ginseng extract(RG-Ext), physical properties, crude saponin recovery of clarified RG-Ext. and stability of red ginseng drink prepared from clarified RG-Ext. were investigated. Color intensity, redness(a value), viscosity and yield of clarified RG-Ext. were decreased in proportion to the increase of ethanol concentration and clarification time, but transmittance, brightness(L value) and yellowness (b value) were decreased. Crude saponin recovery of clarified RG-Ext. were not change significantly by the increase of ethanol concentration. Red ginseng drink prepared from 50-90% ethanol clarified RG-Ext. were stable without precipitation until six months at the storage of $0-5^\circC$ and $40^\circC$.

  • PDF

Pervaporation separation of ethanol via adsorbent-filled silicon rubber membranes

  • Ji, Ling-Yun;Shi, Bao-Li;Wang, Qing-Wen
    • Membrane and Water Treatment
    • /
    • v.5 no.4
    • /
    • pp.265-279
    • /
    • 2014
  • Pervaporation is the most promising technique for the recovery of ethanol from the fermentation system. To date, extensive research has been conducted on the exploration of membrane materials with favorable properties. In this paper, we primarily review the performance of adsorbent-filled rubbery membranes. In addition, the fundamental mechanisms of ethanol and water molecules transportation through composite membranes are demonstrated, particularly from the perspective of cluster formation. Finally, future prospects are also analyzed to develop the guidelines for the future development of excellent membrane materials for ethanol concentration. This paper is not meant to be an exhaustive overview, rather a specialized summary that allows readers to select the information appropriated to their topics.

Differential Effects of Two Widely Used Solvents, DMSO and Ethanol, on the Growth and Recovery of Trypanosoma cruzi Epimastigotes in Culture

  • Cevallos, Ana Maria;Herrera, Juliana;Lopez-Villasenor, Imelda;Hernandez, Roberto
    • Parasites, Hosts and Diseases
    • /
    • v.55 no.1
    • /
    • pp.81-84
    • /
    • 2017
  • Trypanosoma cruzi is the etiological agent of Chagas disease. Epimastigote forms of T. cruzi can be readily cultured in axenic conditions. Ethanol and dimethyl sulfoxide (DMSO) are commonly used solvents employed as vehicles for hydrophobic compounds. In order to produce a reference plot of solvent dependent growth inhibition for T. cruzi research, the growth of epimastigotes was analyzed in the presence of different concentrations of ethanol (0.1-4.0%) and DMSO (0.5-7.5%). The ability of the parasites to resume growth after removal of these solvents was also examined. As expected, both ethanol and DMSO produced a dose-dependent inhibition of cellular growth. Parasites could recover normal growth after 9 days in up to 2% ethanol or 5% DMSO. Since DMSO was better tolerated than ethanol, it is thus recommended to prefer DMSO over ethanol in the case of a similar solubility of a given compound.

Effect of Diets Supplemented with Pharbitis Seed Powder on Serum and Hepatic Lipid Levels, and Enzyme Activities of Rats Administered with Ethanol Chronically

  • Oh, Suk-Heung;Cha, Youn-Soo
    • BMB Reports
    • /
    • v.34 no.2
    • /
    • pp.166-171
    • /
    • 2001
  • The levels of $\gamma$-aminobutyric acid (GAGA) have been analyzed from pharbitis seeds by an AccQ-Tag amino acid analysis procedure. The GABA level of the pharbitis seeds was 125 nmole per gram fresh weight. To investigate the effects of pharbitis seed diets on serum and hepatic lipid levels, as well as enzyme activities of rats administered with ethanol chronically, Sprague-Dawley male rats were fed with either a AIN-76 diet (control), a control diet plus ethanol, a control plus pharbitis seed diet, or a control plus pharbitis seed diet plus ethanol for 30 days. Pharbitis seed diets decreased the serum total cholesterol, triglyceride, LDL-cholesterol, and $\gamma$-GTP levels that were increased by the chronic ethanol administration. In addition, pharbitis seed diets decreased the liver triglyceride and total lipid levels that were increased by the ethanol administration. However, ethanol metabolism was not retarded by the pharbitis seed supplemented diets. The present Endings, plus previous data showing the differences in the effects of cabbage diets having a high or a low level of GABA on the lipid levels and the enzyme activities of rats (Cha and Oh [2000] J. Korean Soc. Food Sci. Nutr. 29, 500-505), raise the possibility that GABA in plants could have a nutraceutical role in the recovery of chronic alcohol-related diseases.

  • PDF