DOI QR코드

DOI QR Code

Differential Effects of Two Widely Used Solvents, DMSO and Ethanol, on the Growth and Recovery of Trypanosoma cruzi Epimastigotes in Culture

  • Cevallos, Ana Maria (Departamento de Biologia Molecular y Biotecnologia, Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de Mexico) ;
  • Herrera, Juliana (Departamento de Biologia Molecular y Biotecnologia, Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de Mexico) ;
  • Lopez-Villasenor, Imelda (Departamento de Biologia Molecular y Biotecnologia, Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de Mexico) ;
  • Hernandez, Roberto (Departamento de Biologia Molecular y Biotecnologia, Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de Mexico)
  • Received : 2016.09.06
  • Accepted : 2017.01.03
  • Published : 2017.02.28

Abstract

Trypanosoma cruzi is the etiological agent of Chagas disease. Epimastigote forms of T. cruzi can be readily cultured in axenic conditions. Ethanol and dimethyl sulfoxide (DMSO) are commonly used solvents employed as vehicles for hydrophobic compounds. In order to produce a reference plot of solvent dependent growth inhibition for T. cruzi research, the growth of epimastigotes was analyzed in the presence of different concentrations of ethanol (0.1-4.0%) and DMSO (0.5-7.5%). The ability of the parasites to resume growth after removal of these solvents was also examined. As expected, both ethanol and DMSO produced a dose-dependent inhibition of cellular growth. Parasites could recover normal growth after 9 days in up to 2% ethanol or 5% DMSO. Since DMSO was better tolerated than ethanol, it is thus recommended to prefer DMSO over ethanol in the case of a similar solubility of a given compound.

Keywords

References

  1. Koberle F. Chagas' disease and Chagas' syndromes: the pathology of American trypanosomiasis. Adv Parasitol 1968; 6: 63-116.
  2. Weiss LM, Tanowitz HB. Preface to Chagas disease. Adv Parasitol 2011; 76: xxi-xxvi.
  3. Bern C, Montgomery SP, Herwaldt BL, Rassi A Jr, Marin-Neto JA, Dantas RO, Maguire JH, Acquatella H, Morillo C, Kirchhoff LV, Gilman RH, Reyes PA, Salvatella R, Moore AC. Evaluation and treatment of Chagas disease in the United States: a systematic review. JAMA 2007; 298: 2171-2181. https://doi.org/10.1001/jama.298.18.2171
  4. Diaz-Urrutia CA, Olea-Azar CA, Zapata GA, Lapier M, Mura F, Aguilera-Venegas B, Aran VJ, Lopez-Munoz RA, Maya JD. Biological and chemical study of fused tri- and tetracyclic indazoles and analogues with important antiparasitic activity. Spectrochim Acta A Mol Biomol Spectrosc 2012; 95: 670-678. https://doi.org/10.1016/j.saa.2012.04.076
  5. Vigueira PA, Ray SS, Martin BA, Ligon MM, Paul KS. Effects of the green tea catechin ( )-epigallocatechin gallate on Trypanosoma brucei. Int J Parasitol Drugs Drug Resist 2012; 2: 225-229. https://doi.org/10.1016/j.ijpddr.2012.09.001
  6. Lim KT, Zahari Z, Amanah A, Zainuddin Z, Adenan MI. Development of resazurin-based assay in 384-well format for high throughput whole cell screening of Trypanosoma brucei rhodesiense strain STIB 900 for the identification of potential anti-trypanosomal agents. Exp Parasitol 2016; 162: 49-56. https://doi.org/10.1016/j.exppara.2016.01.002
  7. Simoes-Silva MR, Nefertiti AS, De Araujo JS, Batista MM, Da Silva PB, Bahia MT, Menna-Barreto RS, Pavao BP, Green J, Farahat AA, Kumar A, Boykin DW, Soeiro MN. Phenotypic screening in vitro of novel aromatic amidines against Trypanosoma cruzi. Antimicrob Agents Chemother 2016; 60: 4701-4707. https://doi.org/10.1128/AAC.01788-15
  8. Tyler KM, Engman DM. The life cycle of Trypanosoma cruzi revisited. Int J Parasitol 2001; 31: 472-481. https://doi.org/10.1016/S0020-7519(01)00153-9
  9. El Jay A. Toxic effects of organic solvents on the growth of Chlorella vulgaris and Selenastrum capricornutum. Bull Environ Contam Toxicol 1996; 57: 191-198. https://doi.org/10.1007/s001289900174
  10. Galvao J, Davis B, Tilley M, Normando E, Duchen MR, Cordeiro MF. Unexpected low-dose toxicity of the universal solvent DMSO. FASEB J 2014; 28: 1317-1330. https://doi.org/10.1096/fj.13-235440
  11. Gerhards E, Gibian H. The metabolism of dimethyl sulfoxide and its metabolic effects in man and animals. Ann N Y Acad Sci 1967; 141: 65-76. https://doi.org/10.1111/j.1749-6632.1967.tb34867.x
  12. Teschke R, Hasumura Y, Lieber CS. Hepatic microsomal alcohol-oxidizing system. Affinity for methanol, ethanol, propanol, and butanol. J Biol Chem 1975; 250: 7397-7404.
  13. Camargo EP. Growth and differentiation in Trypanosoma cruzi. I. Origin of metacyclic trypanosomes in liquid media. Rev Inst Med Trop Sao Paulo 1964; 6: 93-100.
  14. Jacob SW, Herschler R. Pharmacology of DMSO. Cryobiology 1986; 23: 14-27. https://doi.org/10.1016/0011-2240(86)90014-3
  15. Harris RA, Trudell JR, Mihic SJ. Ethanol's molecular targets. Sci Signal 2008; 1: re7
  16. Jones RP. Biological principles for the effects of ethanol. Enzyme Microb Technol 1989; 11: 130-153. https://doi.org/10.1016/0141-0229(89)90073-2
  17. Friend C, Scher W, Holland JG, Sato T. Hemoglobin synthesis in murine virus-induced leukemic cells in vitro: stimulation of erythroid differentiation by dimethyl sulfoxide. Proc Natl Acad Sci USA 1971; 68: 378-382. https://doi.org/10.1073/pnas.68.2.378
  18. Kluge N, Ostertag W, Sugiyama T, Arndt-Jovin D, Steinheider G, Furusawa M, Dube SK. Dimethylsulfoxide-induced differentiation and hemoglobin synthesis in tissue cultures of rat erythroleukemia cells transformed by 7,12-dimethylbenz(a)anthracene. Proc Natl Acad Sci USA 1976; 73: 1237-1240. https://doi.org/10.1073/pnas.73.4.1237
  19. Collins SJ, Ruscetti FW, Gallagher RE, Gallo RC. Terminal differentiation of human promyelocytic leukemia cells induced by dimethyl sulfoxide and other polar compounds. Proc Natl Acad Sci USA 1978; 75: 2458-2462. https://doi.org/10.1073/pnas.75.5.2458
  20. Basch H, Gadebusch HH. In vitro antimicrobial activity of dimethylsulfoxide. Appl Microbiol 1968; 16: 1953-1954.

Cited by

  1. Antifungal activity of dimethyl sulfoxide against Botrytis cinerea and phytotoxicity on tomato and lettuce plants vol.154, pp.4, 2020, https://doi.org/10.1080/11263504.2020.1779846
  2. Thymoquinone anticancer activity is enhanced when combined with royal jelly in human breast cancer vol.12, pp.5, 2017, https://doi.org/10.5306/wjco.v12.i5.342
  3. In vitro effects of tropisetron and granisetron against Echinococcus granulosus (s.s.) protoscoleces by involvement of calcineurin and calmodulin vol.14, pp.1, 2021, https://doi.org/10.1186/s13071-021-04691-9
  4. Bioactive Compounds in Aegopodium podagraria Leaf Extracts and Their Effects against Fluoride-Modulated Oxidative Stress in the THP-1 Cell Line vol.14, pp.12, 2017, https://doi.org/10.3390/ph14121334