• 제목/요약/키워드: Recombinant Protein Production

검색결과 495건 처리시간 0.032초

High-yield Production of Functional Human Lactoferrin in Transgenic Cell Cultures of Siberian Ginseng(Acanthopanax senticosus)

  • Jo, Seung-Hyun;Kwon, Suk-Yoon;Park, Doo-Sang;Yang, Kyoung-Sil;Kim, Jae-Whune;Lee, Ki-Teak;Kwak, Sang-Soo;Lee, Haeng-Soon
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제11권5호
    • /
    • pp.442-448
    • /
    • 2006
  • Human lactoferrin (hLf) is an iron-binding glycoprotein that has been considered to play many biological roles in the human, including the stimulation of the immune system, antimicrobial and anti-inflammatory effects, and regulation of iron absorption. We generated transgenic Siberian ginseng (Acanthopanax senticosus) cell cultures producing a functional hLf protein using the signal peptide sequence from the endoplasmic reticulum and driven by an oxidative stress-inducible SWPA2 promoter which is highly expressed in plant cell cultures. The production of hLf increased proportionally to cell growth and showed a maximal level (up to 3.6% of total soluble protein) at the stationary phase in suspension cultures. Full-length hLf protein was identified by immunoblot analysis in transgenic cell cultures of Siberian ginseng. Recombinant hLf (rhLf) was purified from suspension cells of Siberian ginseng by ammonium sulfate precipitation, cation-exchange and gel filtration chromatography. N-terminal sequences of rhLf were identical to native hLf (nhLf). The overall monosaccharide composition of rhLf showed the presence of plant specific xylose while sialic acid is absent. Antibacterial activity of purified rhLf was higher than that of nhLf. Taken together, we anticipate that medicinal Siberian ginseng cultured cells, as demonstrated by this study, will be a biotechnologically useful source for commercial production of functional hLf not requiring further purification.

Immunization of Mice with Recombinant Brucella abortus Organic Hydroperoxide Resistance (Ohr) Protein Protects Against a Virulent Brucella abortus 544 Infection

  • Hop, Huynh Tan;Reyes, Alisha Wehdnesday Bernardo;Simborio, Hannah Leah Tadeja;Arayan, Lauren Togonon;Min, Won Gi;Lee, Hu Jang;Lee, Jin Ju;Chang, Hong Hee;Kim, Suk
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권1호
    • /
    • pp.190-196
    • /
    • 2016
  • In this study, the Brucella abortus ohr gene coding for an organic hydroperoxide resistance protein (Ohr) was cloned into a maltose fusion protein expression system (pMAL), inserted into Escherichia coli, and purified, and its immunogenicity was evaluated by western blot analysis using Brucella-positive mouse sera. The purified recombinant Ohr (rOhr) was treated with adjuvant and injected intraperitoneally into BALB/c mice. A protective immune response analysis revealed that rOhr induced a significant increase in both the IgG1 and IgG2a titers, and IgG2a reached a higher level than IgG1 after the second and third immunizations. Additionally, immunization with rOhr induced high production of IFN-γ as well as proinflammatory cytokines such as TNF, MCP-1, IL-12p70, and IL-6, but a lesser amount of IL-10, suggesting that rOhr predominantly elicited a cell-mediated immune response. In addition, immunization with rOhr caused a significantly higher degree of protection against a virulent B. abortus infection compared with a positive control group consisting of mice immunized with maltose-binding protein. These findings showed that B. abortus rOhr was able to induce both humoral and cell-mediated immunity in mice, which suggested that this recombinant protein could be a potential vaccine candidate for animal brucellosis.

Cytokine Production in Cholangiocarcinoma Cells in Response to Clonorchis sinensis Excretory-Secretory Products and Their Putative Protein Components

  • Pak, Jhang Ho;Lee, Ji-Yun;Jeon, Bo Young;Dai, Fuhong;Yoo, Won Gi;Hong, Sung-Jong
    • Parasites, Hosts and Diseases
    • /
    • 제57권4호
    • /
    • pp.379-387
    • /
    • 2019
  • Clonorchis sinensis is a carcinogenic human liver fluke that promotes hepatic inflammatory environments via direct contact or through their excretory-secretory products (ESPs), subsequently leading to cholangitis, periductal fibrosis, liver cirrhosis, and even cholangiocarcinoma (CCA). This study was conducted to examine the host inflammatory responses to C. sinensis ESPs and their putative protein components selected from C. sinensis expressed sequenced tag (EST) pool databases, including $TGF-{\beta}$ receptor interacting protein 1(CsTRIP1), legumain (CsLeg), and growth factor binding protein 2 (CsGrb2). Treatment of CCA cells (HuCCT1) with the ESPs or bacterial recombinant C. sinensis proteins differentially promoted the secretion of proinflammatory cytokines ($IL-1{\beta}$, IL-6, and $TNF-{\alpha}$) as well as anti-inflammatory cytokines (IL-10, $TGF-{\beta}1$, and $TGF-{\beta}2$) in a time-dependent manner. In particular, recombinant C. sinensis protein treatment resulted in increase (at maximum) of ~7-fold in $TGF-{\beta}1$, ~30-fold in $TGF-{\beta}2$, and ~3-fold in $TNF-{\alpha}$ compared with the increase produced by ESPs, indicating that CsTrip1, CsLeg, and CsGrb2 function as strong inducers for secretion of these cytokines in host cells. These results suggest that C. sinensis ESPs contribute to the immunopathological response in host cells, leading to clonorchiasis-associated hepatobiliary abnormalities of greater severity.

Optimization of Culture Conditions for Production of Helicobacter pylori Adhesin Protein Genetically Linked to Cholera Toxin A2B in Escherichia coli JM101

  • Kim, Byung-Oh;Pyo, Suh-Kneung
    • Biomolecules & Therapeutics
    • /
    • 제9권3호
    • /
    • pp.162-166
    • /
    • 2001
  • Helicobacter pylori is a major cause of gastric-associated diseases. In our previous study, the Adhesin/CTXA2B was expressed as insoluble recombinant chimeric protein derived from the H. pylori adhesin genetically coupled to CTXA2B subunit in Escherichia coli. Since it is very important to optimize IPTG concentration, culture temperature and composition of medium to maximize cell growth and productivity, these conditional growth factors were determined for increasing the productivity of the expressed Adhesin/CTXA2B chimeric protein in Escherichia coli JM101 carrying pTEDhpa/ctxa2b. Our data demonstrate that optimal medium for increased production of chimeric protein was a YCP/Glu medium composed of 2% yeast extract, 1% casamino acid, phosphate solution [0.3% $KH_2P0_4$, 0.4% $Na_2HP0_4$, 0.25% ($NH_4)_2HPO_4$], and 0.5% glucose. In addition, optimal concentration of IPTG was 1 mM and culture temperature, $37^{\circ}C$.

  • PDF

Production of a Recombinant Anti-Human CD4 Single-Chain Variable-Fragment Antibody Using Phage Display Technology and Its Expression in Escherichia coli

  • Babaei, Arash;Zarkesh-Esfahani, Sayyed Hamid;Gharagozloo, Marjan
    • Journal of Microbiology and Biotechnology
    • /
    • 제21권5호
    • /
    • pp.529-535
    • /
    • 2011
  • Single-chain variable fragment (scFv) is a fusion protein of the variable regions of the heavy (VH) and light (VL) chains of immunoglobulin, connected with a short linker peptide of 10 to about 20 amino acids. In this study, the scFv of a monoclonal antibody against the third domain of human CD4 was cloned from OKT4 hybridoma cells using the phage display technique and produced in E. coli. The expression, production, and purification of anti-CD4 scFv were tested using SDS-PAGE and Western blot, and the specificity of anti-CD4 scFv was examined using ELISA. A 31 kDa recombinant anti-CD4 scFv was expressed and produced in bacteria, which was confirmed by SDS-PAGE and Western blot assays. Sequence analysis proved the ScFv structure of the construct. It was able to bind to CD4 in quality ELISA assay. The canonical structure of anti-CD4 scFv antibody was obtained using the SWISS_MODEL bioinformatics tool for comparing with the scFv general structure. To the best of our knowledge, this is the first report for generating scFv against human CD4 antigen. Engineered anti-CD4 scFv could be used in immunological studies, including fluorochrome conjugation, bispecific antibody production, bifunctional protein synthesis, and other genetic engineering manipulations. Since the binding site of our product is domain 3 (D3) of the CD4 molecule and different from the CD4 immunological main domain, including D1 and D2, further studies are needed to evaluate the anti-CD4 scFv potential for diagnostic and therapeutic applications.

Screening of Domestic Silkworm Strains for Efficient Heterologous Protein Expression by Bombyx mori Nuclear Polyhedrosis Virus (BmNPV)

  • Jo, Sun Jung;Choi, Ji-Hyun;Kang, Ju-Il;Lim, Jae-Hwan;Seok, Young Sik;Lee, Jae Man;Kusakabe, Takahiro;Hong, Sun Mee
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제29권2호
    • /
    • pp.185-192
    • /
    • 2014
  • Recombinant proteins can be generated quickly and easily in large amounts and at low-cost in silkworm larvae by using Bombyx mori nuclear polyhedrosis virus (BmNPV). We searched for high-permissive silkworm strains that have high production levels of heterologous proteins and are thus suitable for use as biofactories. In this study, we performed the analysis using a BmNPV vector expressing luciferase as a marker, and we confirmed protein expression by evaluating luciferase activity, determined by western blotting and luciferase ELISA, and confirmed transcription expression by semi- and quantitative real time PCR. For the selection of host silkworm strains, we first chose 52 domestic BmNPV sensitive strains and then identified 10 high-permissive and 5 low-permissive strains. In addition, to determine which hybrid of the high-permissive strains would show heterosis, nine strains derived through three-way crossing were tested for luciferase activity by western blotting, and luciferase ELISA. We found a correlation between luciferase activity and luciferase protein expression, but not transcription. There was no noticeable difference in protein expression levels between Jam313 as the high-permissive control strain and the three-way hybrid strains; however, the three-way cross strains showed lower luciferase activity compared with Jam313. In this study, luciferase protein production in the larvae of 52 domestic silkworm strains was elucidated using BmNPV.

식물기반 치료용 항체생산 (Plant-based production of therapeutic antibodies)

  • 김영관;소양강;박다영;김현순;전재흥;추영국;고기성
    • Journal of Plant Biotechnology
    • /
    • 제37권3호
    • /
    • pp.262-268
    • /
    • 2010
  • Antibodies are powerful and versatile tools to play a critical role in the diagnosis and treatment of many diseases. Their application has been enhanced significantly with the advanced recombinant DNA and heterologonous expression technologies, allowing to produce immunotherapeutic proteins with improved biofunctional properties. However, with currently available technologies, mammalian cell-based therapeutic antibody production, as an alternative for production in humans and animals, is often not plentiful for passive immunotherapeutics in treatment of many diseases. Recently, plant expression systems for therapeutic antibodies have become well-established. Thus, plants have been considered to provide an attractive alternative production system for therapeutic antibodies, as plants have several advantages such as the lack of human pathogens, and low cost of upstream production and flexible scale-up of highly valuable recombinant glycoproteins. Recent advances in modification of posttranslational processing for human-like glycosylation in transgenic plants will make it possible that plant can become a suitable protein expression system over the animal cellbased current production system. This review will discuss recent advances in plant expression technology and issues for their application to therapeutic antibody production.

Effect of methanol feed rate on the production of saxatilin by recombinant Pichia pastoris

  • 민철기;박홍우;정광희
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2000년도 추계학술발표대회 및 bio-venture fair
    • /
    • pp.376-379
    • /
    • 2000
  • 메탄올 자화효모인 Pichis pastoris는 메탄올에 의해 유도되는 강력한 AOX1 프로모터의 존재로 인하여 외래 단백질의 생산을 위한 가장 좋은 숙주중의 하나이다. methanol fed batch phase(MFP)동안에 메탄올의 공급은 그 메탄올이 단백질의 발현을 유도하며 또한 숙주에게 에너지원으로 쓰이기 때문에 매우 중요하다. 과량의 메탄올은 세포의 성장을 저해하며, 반면에 불충분한 메탄올의 공급은 세포를 느리게 자라게 하고 생산성도 떨어뜨린다. 본 연구는 새로운 혈소판 응집 억제제인 saxatilin의 생산성, 혹은 수율을 최대화 하기 위해서 메탄올의 공급속도와 세포의 비성장속도를 조절하였다.

  • PDF