• Title/Summary/Keyword: Rechargeable batteries

Search Result 202, Processing Time 0.03 seconds

Electrochemical Characteristics of Silicon-carbon Composite Anodes for Lithium Rechargeable Batteries

  • Lee, Jaeho;Won, Sora;Shim, Joongpyo;Park, Gyungse;Sun, Ho-Jung;Lee, Hong-Ki
    • Transactions on Electrical and Electronic Materials
    • /
    • v.15 no.4
    • /
    • pp.193-197
    • /
    • 2014
  • Si-carbon composites as anode materials for lithium rechargeable batteries were prepared simply by mixing Si nanoparticles with carbon black and/or graphite through a solution process. Si nanoparticles were well dispersed and deposited on the surface of the carbon in a tetrahydrofuran solution. Si-carbon composites showed more than 700 mAh/g of initial capacity under less than 20% loading of Si nanoparticle in the composites. While the electrode with only Si nanoparticles showed fast capacity fading during continuous cycling, Si-carbon composite electrodes showed higher capacities. The cycle performances of Si nanoparticles in composites containing graphite were improved due to the role of the graphite as a matrix.

The Effect of Low-Temperature Carbon Encapsulation on Si Nanoparticles for Lithium Rechargeable Batteries

  • Jung, Jaepyeong;Song, Kyeongse;Kang, Yong-Mook
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.7
    • /
    • pp.2162-2166
    • /
    • 2013
  • The tailored surface modification of electrode materials is crucial to realize the wanted electronic and electrochemical properties. In this regard, a dexterous carbon encapsulation technique can be one of the most essential preparation methods for the electrode materials for lithium rechargeable batteries. For this purpose, DL-malic acid ($C_4H_6O_5$) was here used as the carbon source enabling an amorphous carbon layer to be formed on the surface of Si nanoparticles at enough low temperature to maintain their own physical or chemical properties. Various structural characterizations proved that the bulk structure of Si doesn't undergo any discernible change except for the evolution of C-C bond attributed to the formed carbon layer on the surface of Si. The improved electrochemical performance of the carbon-encapsulated Si compared to Si can be attributed to the enhanced electrical conductivity by the surface carbon layer as well as its role as a buffering agent to absorb the volume expansion of Si during lithiation and delithiation.

Selective doping of Li-rich layered oxide cathode materials for high-stability rechargeable Li-ion batteries

  • Han, Dongwook;Park, Kwangjin;Park, Jun-Ho;Yun, Dong-Jin;Son, You-Hwan
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.68
    • /
    • pp.180-186
    • /
    • 2018
  • We report the discovery of Li-rich $Li_{1+x}[(Ni_{0.225}Co_{0.15}Mn_{0.625})_{1-y}V_y]O_2$ as a cathode material for rechargeable lithium-ion batteries in which a small amount of tetravalent vanadium ($V^{4+}$) is selectively and completely incorporated into the manganese sites in the lattice structure. The unwanted oxidation of vanadium to form a $V_2O_5-like$ secondary phase during high-temperature crystallization is prevented by uniformly dispersing the vanadium ions in coprecipitated $[(Ni_{0.225}Co_{0.15}Mn_{0.625})_{1-y}V_y](OH)_2$ particles. Upon doping with $V^{4+}$ ions, the initial discharge capacity (>$275mA\;h\;g^{-1}$), capacity retention, and voltage decay characteristics of the Li-rich layered oxides are improved significantly in comparison with those of the conventional undoped counterpart.

Properties, Preparation, and Energy Storage Applications of Two-dimensional Molybdenum Disulfide (2차원 이황화몰리브덴의 성질, 제조 및 에너지 저장 소자 응용)

  • Choi, Bong Gill
    • Applied Chemistry for Engineering
    • /
    • v.30 no.2
    • /
    • pp.133-140
    • /
    • 2019
  • Two-dimensional (2D) ultrathin molybdenum dichalcogenides $MoS_2$ has gained a great deal of attention in energy conversion and storage applications because of its unique morphology and property. The 2D $MoS_2$ nanosheets provide a high specific surface area, 2D charge channel, sub-nanometer thickness, and high conductivity, which lead to high electrochemical performances for energy storage devices. In this paper, an overview of properties and synthetic methods of $MoS_2$ nanosheets for applications of supercapacitors and rechargeable batteries is introduced. Different phases triangle prismatic 2H and metallic octahedral 1T structured $MoS_2$ were characterized using various analytical techniques. Preparation methods were focused on top-down and bottom-up approaches, including mechanical exfoliation, chemical intercalation and exfoliation, liquid phase exfoliation by the direct sonication, electrochemical intercalation exfoliation, microwave-assisted exfoliation, mechanical ball-milling, and hydrothermal synthesis. In addition, recent applications of supercapacitors and rechargeable batteries using $MoS_2$ electrode materials are discussed.

Developments on Low Cost Protection Circuit of Discharge for D-type Non-rechargeable Lithium Batteries(Li/SOCl2) (D형 리튬 1차 단위전지(Li/SOCl2)용 저가형 과방전 차단회로 개발)

  • Ahn, Mahn-Ki;Jung, Yeong-Tak;Lim, Jae-Sung;Roh, Tae-Joo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.5
    • /
    • pp.665-674
    • /
    • 2018
  • In this paper, we propose a development results of a D-type non-rechargeable lithium battery($Li/SOCl_2$) on improvement in a low cost protection circuit of discharge for domestic military power source. According to this study, we describe a new design and product with 8-bit microcontroller in the protection circuit which can estimate state of health of the battery regardless of occurring an initial voltage delay. Also this paper discuss and facilitate development as solution to a safety about the non-rechargeable lithium batteries. As a result, we verified a quality of the protection circuit by a development test and evaluation(DT&E) process.

Development of 600-MHz 19F-7Li Solid-State NMR Probe for In-Situ Analysis of Lithium Ion Batteries

  • Jeong, Ji-Ho;Park, Yu-Geun;Choi, Sung-Sub;Kim, Yongae
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.11
    • /
    • pp.3253-3256
    • /
    • 2013
  • Lithium is a highly attractive material for high-energy-concentration batteries, since it has low weight and high potential. Rechargeable lithium-ion batteries (LIBs), which have the extremely high gravimetric and volumetric energy densities, are currently the most preferable power sources for future electric vehicles and various portable electronic devices. In order to improve the efficiency and lifetime, new electrode compounds for lithium intercalation or insertion have been investigated for rechargeable batteries. Solid-state nuclear magnetic resonance (NMR) is a very useful tool to investigate the structural changes in electrode materials in actual working lithium-ion batteries. To detect the in-situ microstructural changes of electrode and electrolyte materials, $^7Li-^{19}F$ double-resonance solid-state NMR probe with a static solenoidal coil for a 600-MHz narrow-bore magnet was designed, constructed, and tested successfully.