Browse > Article
http://dx.doi.org/10.14478/ace.2019.1016

Properties, Preparation, and Energy Storage Applications of Two-dimensional Molybdenum Disulfide  

Choi, Bong Gill (Department of Chemical Engineering, Kangwon National University)
Publication Information
Applied Chemistry for Engineering / v.30, no.2, 2019 , pp. 133-140 More about this Journal
Abstract
Two-dimensional (2D) ultrathin molybdenum dichalcogenides $MoS_2$ has gained a great deal of attention in energy conversion and storage applications because of its unique morphology and property. The 2D $MoS_2$ nanosheets provide a high specific surface area, 2D charge channel, sub-nanometer thickness, and high conductivity, which lead to high electrochemical performances for energy storage devices. In this paper, an overview of properties and synthetic methods of $MoS_2$ nanosheets for applications of supercapacitors and rechargeable batteries is introduced. Different phases triangle prismatic 2H and metallic octahedral 1T structured $MoS_2$ were characterized using various analytical techniques. Preparation methods were focused on top-down and bottom-up approaches, including mechanical exfoliation, chemical intercalation and exfoliation, liquid phase exfoliation by the direct sonication, electrochemical intercalation exfoliation, microwave-assisted exfoliation, mechanical ball-milling, and hydrothermal synthesis. In addition, recent applications of supercapacitors and rechargeable batteries using $MoS_2$ electrode materials are discussed.
Keywords
$MoS_2$; Supercapacitor; Batteries; Composite; Electrochemistry;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Z. Zeng, Z. Yin, X. Huang, H. Li, Q. He, G. Lu, F. Boey, and H. Zhang, Single-layer semiconducting nanosheets: High-yield preparation and device fabrication, Angew. Chem., Int. Ed., 50, 11093-11097 (2011).   DOI
2 G. Zhang, H. Liu, J. Qu, and J. Li, Two-dimensional layered $MoS_2$: Rational design, properties and electrochemical applications, Energy Environ. Sci., 9, 1190-1209 (2016).   DOI
3 Z. Zeng, T. Sun, J. Zhu, X. Huang, Z. Yin, G. Lu, Z. Fan, Q. Yan, H. H. Hng, and H. Zhang, An effective method for the fabrication of few-layer-thick inorganic nanosheets, Angew. Chem. Int. Ed., 51, 9052-9056 (2012).   DOI
4 P. Cheng, K. Sun, and Y. H. Hu, Mechanically-induced reverse phase transformation of $MoS_2$ from stable 2H to metastable 1T and its memristive behavior, RSC Adv., 6, 65691-65697 (2016).   DOI
5 S. Reshmi, M. V. Akshaya, B. Satpati, P. K. Basu, and K. Bhattacharjee, Structural stability of coplanar 1T-2H superlattice $MoS_2$ under high energy electron beam, Nanotechnology, 29, 205604-205616 (2018).   DOI
6 Y. Qi, Q. Xu, Y. Wang, B. Yan, Y. Ren, and Z. Chen, $CO_2$-induced phase engineering: Protocol for enhanced photoelectrocatalytic performance of 2D $MoS_2$ nanosheets, ACS Nano, 10, 2903-2909 (2016).   DOI
7 Z. H. Chi, X. M. Zhao, H. Zhang, A. F. Goncharov, S. S. Lobanov, T. Kagayama, M. Sakata, and X. J. Chen, Pressure-induced metallization of molybdenum disulfide, Phys. Rev. Lett., 113, 036802-036805 (2014).   DOI
8 X. Geng, W. Sun, W. Wu, B. Chen, A. Al-Hilo, M. Benamara, H. Zhu, F. Watanabe, J. Cui, and T. Chen, Pure and stable metallic phase molybdenum disulfide nanosheets for hydrogen evolution reaction, Nat. Commun., 7, 10672-10679 (2016).   DOI
9 Q. Liu, X. L. Li, Q. He, A. Khalil, D. B. Liu, T. Xiang, X. J. Wu, and L. Song, Gram-scale aqueous synthesis of stable few-layered 1T-$MoS_2$: Applications for visible-light-driven photocatalytic hydrogen evolution, Small, 11, 5556-5564 (2015).   DOI
10 P. Joensen, R. F. Frindt, and S. R. Morrison, Single-layer $MoS_2$, Mater. Res. Bull., 21, 457-461 (1986).   DOI
11 M. Acerce, D. Voiry, and M. Chhowalla, Metallic 1T phase $MoS_2$ nanosheets as supercapacitor, Nat. Nanotechnol., 10, 313-318 (2015).   DOI
12 Z. P. Liu, Z. C. Gao, Y. H. Liu, M. S. Xia, R. W. Wang, and N. Li, Heterogeneous nanostructure based on 1T-phase $MoS_2$ for enhanced electrocatalytic hydrogen evolution, ACS Appl. Mater. Interfaces, 9, 25291-25297 (2017).   DOI
13 N. Choudhary, M. Patel, Y. H. Ho, N. B. Dahotre, W. Lee, J. Y. Hwang, and W. Choi, Directly deposited $MoS_2$ thin film electrodes for high performance supercapacitors, J. Mater. Chem. A, 3, 24049-24054 (2015).   DOI
14 S. S. Karade, D. P. Dubal, and B. R. Sankapal, $MoS_2$ ultrathin nanoflakes for high performance supercapacitors: Room temperature chemical bath deposition (CBD), RSC Adv., 6, 39159-39165 (2016).   DOI
15 N. Thi Xuyen and J. M. Ting, Hybridized 1T/2H $MoS_2$ having controlled 1T concentrations and its use in supercapacitors, Chem. Eur. J., 23, 17348-17355 (2017).   DOI
16 K. J. Huang, L. Wang, J. Z. Zhang, and K. Xing, $MoS_2$-based nanocomposites for electrochemical energy storage, J. Electroanal. Chem., 752, 33-40 (2015).   DOI
17 T. N. Y. Khawula, K. Raju, P. J. Franklyn, L. Sigalas, and K. I. Ozoemena, Symmetric pseudocapacitors based on molybdenum disulfide ($MoS_2$)-modified carbon nanospheres: Correlating physicochemistry and synergistic interaction on energy storage, J. Mater. Chem. A, 4, 6411-6425 (2016).   DOI
18 Y. Zhang, T. He, G. Liu, L. Zu, and J. Yang, One-pot mass preparation of $MoS_2$/C aerogels for high-performance supercapacitors and lithium-ion batteries, Nanoscale, 9, 10059-10066 (2017).   DOI
19 S. Zhang, B. V. R. Chowdari, Z. Wen, J. Jin, and J. Yang, Constructing highly oriented configuration by few-layer $MoS_2$: Toward high-performance lithium-ion batteries and hydrogen evolution reactions, ACS Nano, 9, 12464-12472 (2015).   DOI
20 J. Wang, Z. Wu, H. Yin, W. Li, and Y. Jiang, Poly(3,4-ethylenedioxythiophene)/$MoS_2$ nanocomposites with enhanced electrochemical capacitance performance, RSC Adv., 4, 56926-56932 (2014).   DOI
21 J. Xu, H. Tang, Y. Chu, and C. Li, Facile synthesis and electrochemical properties of $MoS_2$ nanostructures with different lithium storage properties, RSC Adv., 5, 48492-48499 (2015).   DOI
22 M. Wu, J. Zhan, K. Wu, Z. Li, L. Wang, B. Geng, L. Wang, and D. Pan, Metallic 1T $MoS_2$ nanosheet arrays vertically grown on activated carbon fiber cloth for enhanced Li-ion storage performance, J. Mater. Chem. A, 5, 14061-14069 (2017).   DOI
23 C. P. Veeramalai, F. Li, H. Xu, T. W. Kimb, and T. Guo, One pot hydrothermal synthesis of graphene like $MoS_2$ nanosheets for application in high performance lithium ion batteries, RSC Adv., 5, 57666-57670 (2015).   DOI
24 H. Y. Wang, B. Y. Wang, D. Wang, L. Lu, J. G. Wang, and Q. C. Jiang, Facile synthesis of hierarchical worm-like $MoS_2$ structures assembled with nanosheets as anode for lithium ion batteries, RSC Adv., 5, 58084-58090 (2015).   DOI
25 Y. Zhou, Y. Liu, W. Zhao, R. Xu, D. Wang, B. Li, X. Zhou, and H. Shen, Rational design and synthesis of 3D $MoS_2$ hierarchitecture with tunable nanosheets and 2H/1T phase within graphene for superior lithium storage, Electrochim. Acta, 211, 1048-1055 (2016).   DOI
26 Y. Liu, L.-Z. Fan, and L. Jiao, Graphene intercalated in graphene-like $MoS_2$: A promising cathode for rechargeable Mg batteries, J. Power Sources, 340, 104-110 (2017).   DOI
27 Y. C. Jeong, J. H. Kim, S. H. Kwon, J. Y. Oh, J. Park, Y. Jung, S. G. Lee, S. J. Yang, and C. R. Park, Rational design of exfoliated 1T $MoS_2@CNT$-based bifunctional separators for lithium sulfur batteries, J. Mater. Chem. A, 5, 23909-23918 (2017).   DOI
28 S. Dan, Y. Delai, L. Ping, T. Yougen, G. Jun, W. Lianzhou, and W. Haiyan, $MoS_2$/graphene nanosheets from commercial bulky $MoS_2$ and graphite as anode materials for high rate sodium ion batteries, Adv. Energy Mater., 8, 1702383-1702394 (2018).   DOI
29 Y. Li, Y. Liang, F. C. Robles Hernandez, H. D. Yoo, Q. An, and Y. Yao, Enhancing sodium-ion battery performance with interlayer- expanded $Mo_3$-PEO nanocomposites, Nano Energy, 15, 453-461 (2015).   DOI
30 Y. L. Liang, H. D. Yoo, Y. F. Li, J. Shuai, H. A. Calderon, F. C. R. Hernandez, L. C. Grabow, and Y. Yao, Interlayer-expanded molybdenum disulfide nanocomposites for electrochemical magnesium storage, Nano Lett., 15, 2194-2202 (2015).   DOI
31 H. Wu and K. Lian, Aqueous based asymmetrical-bipolar electrochemical capacitor with a 2.4 V operating voltage, J. Power Sources, 378, 209-215 (2018).   DOI
32 M. Salanne, B. Rotenber, K. Naoi, K. Kaneko, P.-L. Taberna, C. P. Grey, B. Dunn, and P. Simon, Efficient storage mechanisms for building better supercapacitors, Nat. Energy, 1, 16070-16079 (2016).   DOI
33 P. Simon, Y. Gogotsi, and B. Dunn, Where do batteries end and supercapacitors begin?, Science, 343, 1210-1211 (2014).   DOI
34 G. Z. Chen, Supercapacitor and supercapattery as emerging electrochemical energy stores, Int. Mater. Rev., 62, 173-202 (2017).   DOI
35 J. Sun, C. Wu, X. Sun, H. Hu, C. Zhi, L. Houa, and C. Yuan, Recent progresses in high-energy-density all pseudocapacitive-electrode-materials-based asymmetric supercapacitors, J. Mater. Chem. A, 5, 9443-9464 (2017).   DOI
36 N. Choudhary, C. Li, J. Moore, N. Nagaiah, L. Zhai, Y. Jung, and J. Thomas, Asymmetric supercapacitor electrodes and devices, Adv. Mater., 29, 1605336-1605365 (2017).   DOI
37 K. Nueangnoraj, R. Ruiz-Rosas, H. Nishihara, S. Shiraishi, E. Morallon, D. Cazorla-Amoros, and T. Kyotani, Carbon-carbon asymmetric aqueous capacitor by pseudocapacitive positive and stable negative electrodes, Carbon, 67, 792-794 (2018).   DOI
38 J.-G. Wang, Y. Yang, Z.-H. Huang, and F. Kang, A high-performance asymmetric supercapacitor based on carbon and carbon-$MnO_2$ nanofiber electrodes, Carbon, 61, 190-199 (2013).   DOI
39 M. Yang, K. G. Lee, S. J. Lee, S. B. Lee, Y.-K. Han, and B. G. Choi, Three-dimensional expanded graphene-metal oxide film via solid-state microwave irradiation for aqueous asymmetric supercapacitors, ACS Appl. Mater. Interfaces, 7, 22364-22371 (2015).   DOI
40 F. Wang, S. Xiao, Y. Hou, C. Hu, L. Liu, and Y. Wu, Electrode materials for aqueous asymmetric supercapacitors, RSC Adv., 3, 13059-13084 (2013).   DOI
41 Q. Wang, J. Yan, and Z. Fan, Carbon materials for high volumetric performance supercapacitors: Design, progress, challenges and opportunities, Energy Environ. Sci., 9, 729-762 (2016).   DOI
42 H. Jeon, J.-M. Jeong, H. G. Kang, H.-J. Kim, J. Park, D. H. Kim, Y. M. Jung, S. Y. Hwang, Y.-K. Han, and B. G. Choi, Scalable water-based production of highly conductive 2D nanosheets with ultrahigh volumetric capacitance and rate capability, Adv. Energy. Mater., 8, 1800227-1800238 (2018).   DOI
43 C. Yang, Z. Chen, I. Shakir, Y. Xu, and H. Lu, Rational synthesis of carbon shell coated polyaniline/$MoS_2$ monolayer composites for high-performance supercapacitors, Nano Res., 9, 951-962 (2016).   DOI
44 Q. Pan, F. Zheng, X. Ou, C. Yang, X. Xiong, Z. Tang, L. Zhao, and M. Liu, $MoS_2$ decorated $Fe_3O_4/Fe_{1-x}S@C$ nanosheets as high-performance anode materials for lithium ion and sodium ion batteries, ACS Sustain. Chem. Eng., 5, 4739-4745 (2017).   DOI
45 M. Wang, H. Fei, P. Zhang, and L. Yin, Hierarchically layered $MoS_2$/$Mn_3O_4$ hybrid architectures for electrochemical supercapacitors with enhanced performance, Electrochim. Acta, 209, 389-398 (2016).   DOI
46 D. Xie, D. H. Wang, W. J. Tang, X. H. Xia, Y. J. Zhang, X. L. Wang, C. D. Gu, and J. P. Tu, Binder-free network-enabled $MoS_2$-PPY-rGO ternary electrode for high capacity and excellent stability of lithium storage, J. Power Sources, 307, 510-518 (2016).   DOI
47 M. R. Lukatskaya, B. Dunn, and Y. Gogotsi, Multidimensional materials and device architectures for future hybrid energy storage, Nat. Commun., 7, 12647-12659 (2016).   DOI
48 T. Wang, C. Sun, M. Yang, G. Zhao, S. Wang, F. Ma, L. Zhang, Y. Shao, Y. Wu, B. Huang, and X. Hao, Phase-transformation engineering in $MoS_2$ on carbon cloth as flexible binder-free anode for enhancing lithium storage, J. Alloys Compd., 716, 112-118 (2017).   DOI
49 B. Chen, N. Zhao, L. Guo, F. He, C. Shi, C. He, J. Li, and E. Liu, Facile synthesis of 3D few-layered $MoS_2$ coated $TiO_2$ nanosheet core-shell nanostructures for stable and high-performance lithium-ion batteries, Nanoscale, 7, 12895-12905 (2015).   DOI
50 M. Wang, L. Fan, D. Tian, X. Wu, Y. Qiu, C. Zhao, B. Guan, Y. Wang, N. Zhang, and K. Sun, Rational design of hierarchical $SnO_2$/1T-$MoS_2$ nanoarray electrode for ultralong-Life Li-S batteries, ACS Energy Lett., 3, 1627-1633 (2018).   DOI
51 P. Zhang, F. Wang, M. Yu, X. Zhuang, and X. Feng, Two-dimensional materials for miniaturized energy storage devices: From individual devices to smart integrated systems, Chem. Soc. Rev., 47, 7426-7451 (2018).   DOI
52 X. Xiao, H. Wang, P. Urbankowski, and Y. Gogotsi, Topochemical synthesis of 2D materials, Chem. Soc. Rev., 47, 8744-8765 (2018).   DOI
53 X. Ke, J. M. Prahl, J. I. D. Alexander, J. S. Wainright, T. A. Zawodzinski, and R. F. Savinell, Rechargeable redox flow batteries:Flow fields, stacks and design considerations, Chem. Soc. Rev., 47, 8721-8743 (2018).   DOI
54 Q. Wang, L. Jiang, and J. Sun, Progress of enhancing the safety of lithium ion battery from the electrolyte aspect, Nano Energy, 55, 93-114 (2019).   DOI
55 F. Zou, Y.-M. Chen, K. Liu, Z. Yu, W. Liang, S. M. Bhaway, M. Gao, and Y. Zhu, Metal organic frameworks derived hierarchical hollow NiO/Ni/graphene composites for lithium and sodium storage, ACS Nano, 10, 377-386 (2016).   DOI
56 Y. Zou, X. Rui, W. Sun, Z. Xu, Y. Zhou, W. J. Ng, Q. Yan, and E. Fong, Biochemistry-enabled 3D foams for ultrafast battery cathodes, ACS Nano, 9, 4628-4635 (2015).   DOI
57 A. J. Crowe, K. K. Stringham, J. L. Dimeglio, and B. M. Bartlett, Adsoprtion of aromatic decomposition products from phenyl-containing magnesium-ion battery electrolyte solutions, J. Phys. Chem. C, 121, 7711-7717 (2017).   DOI
58 C. Couly, M. Alhabeb, K. L. Van Aken, N. Kurra, L. Gomes, A. M. Navarro-Suarez, B. Anasori, H. N. Alshareef, and Y. Gogotsi, Asymmetric flexible MXene-reduced graphene oxide microsupercapacitor, Adv. Electron. Mater., 4, 1700339-1700357 (2018).   DOI
59 Y.-H. Tan, W.-T. Yao, T. Zhang, T. Ma, L.-L. Lu, F. Zhou, H.-B. Yao, and S.-H. Yu, High voltage magnesium-ion battery enabled by nanocluster $Mg_3Bi_2$ alloy anode in noncorrosive electrolyte, ACS Nano, 12, 5856-5865 (2018).   DOI
60 Y. Chen, W. K. Pang, H. Bai, T. Zhou, Y. Liu, S. Li, and Z. Guo, Enhanced structural stability of nickel-cobalt hydroxide via intrinsic pillar effect of metaborate for high-power and long-life supercapacitor electrodes, Nano Lett., 17, 429-436 (2016).   DOI
61 Z. Lei, J. Zhang, and X. S. Zhao, Ultrathin $MnO_2$ nanofibers grown on graphitic carbon spheres as high-performance asymmetric supercapacitor electrodes, J. Mater. Chem., 22, 153-160 (2012).   DOI
62 F. Ghasemi, M. Jalali, A. Abdollahi, S. Mohammadi, Z. Sanaee, and Sh. Mohajerzadeh, A high performance supercapacitor based on decoration of $MoS_2$/reduced graphene oxide with NiO nanoparticles, RSC Adv., 7, 52772-52781 (2017).   DOI
63 K. S. Kumar, N. Choudhary, Y. Jung, and J. Thomas, Recent advances in two-dimensional nanomaterials for supercapacitor electrode applications, ACS Energy Lett., 3, 482-495 (2018).   DOI
64 W.-J. Zhang and K.-J. Huang, A review of recent progress in molybdenum disulfide-based supercapacitors and batteries, Inorg. Chem. Front., 4, 1602-1620 (2017).   DOI
65 T. Wang, S. Chen, H. Pang, H. Xue, and Y. Yu, $MoS_2$-based nanocomposites for electrochemical energy storage, Adv. Sci., 4, 1600289-1600315 (2017).   DOI
66 Z. S. Iro, C. Subramani, and S. S. Dash, A brief review on electrode materials for supercapacitor, Int. J. Electrochem. Sci., 11, 10628-10643 (2016).
67 B. Mendoza-Sanchez and Y. Gogotsi, Synthesis of two-dimensional materials for capacitive energy storage, Adv. Mater., 28, 6104-6135 (2016).   DOI
68 S. Tongay, J. Zhou, C. Ataca, K. Lo, T. S. Mattenws, J. Li, J. C. Grossman, and J. Wu, Thermally driven crossover from indirect toward direct bandgap in 2D semiconductors: $MoSe_2$ versus $MoS_2$, Nano Lett., 12, 5576-5580 (2012).   DOI
69 M. Chhowalla, H. S. Shin, G. Eda, L.-J. Li, K. P. Loh, and H. Zhang, The chemistry of two-dimensional layered transition metal dichalcogenides nanosheets, Nat. Chem., 5, 263-275 (2013).   DOI
70 B. Hinnemann, P. G. Moses, J. Bonde, K. P. Jorgensen, J. H. Nielsen, S. Horch, I. Chorkendorff, and J. K. Norskov, Biomimetic hydrogen evolution: $MoS_2$ nanoparticles as catalyst for hydrogen evolution, J. Am. Chem. Soc., 127, 5308-5309 (2005).   DOI
71 S. Shi, Z. Sun, and Y. H. Hu, Synthesis, stabilization and applications of 2-dimensional 1T metallic $MoS_2$, J. Mater. Chem. A, 6, 23932-23977 (2018).   DOI
72 J.-M. Jeong, H. G. Kang, H.-J. Kim, S. B. Hong, H. Jeon, S. Y. Hwang, D. Seo, B. E. Kwak, Y.-K. Han, B. G. Choi, and D. H. Kim, 2D nanosheets: hydraulic power manufacturing for highly scalable and stable 2D nanosheet dispersions and their film electrode application, Adv. Funct. Mater., 28, 1802952-1802964 (2018).   DOI
73 K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim, Two-dimensional atomic crystals, Proc. Natl. Acad. Sci. U.S.A., 102, 10451-10453 (2005).   DOI