Browse > Article
http://dx.doi.org/10.5012/bkcs.2013.34.11.3253

Development of 600-MHz 19F-7Li Solid-State NMR Probe for In-Situ Analysis of Lithium Ion Batteries  

Jeong, Ji-Ho (Department of Chemistry, Hankuk University of Foreign Studies)
Park, Yu-Geun (Department of Chemistry, Hankuk University of Foreign Studies)
Choi, Sung-Sub (Department of Chemistry, Hankuk University of Foreign Studies)
Kim, Yongae (Department of Chemistry, Hankuk University of Foreign Studies)
Publication Information
Abstract
Lithium is a highly attractive material for high-energy-concentration batteries, since it has low weight and high potential. Rechargeable lithium-ion batteries (LIBs), which have the extremely high gravimetric and volumetric energy densities, are currently the most preferable power sources for future electric vehicles and various portable electronic devices. In order to improve the efficiency and lifetime, new electrode compounds for lithium intercalation or insertion have been investigated for rechargeable batteries. Solid-state nuclear magnetic resonance (NMR) is a very useful tool to investigate the structural changes in electrode materials in actual working lithium-ion batteries. To detect the in-situ microstructural changes of electrode and electrolyte materials, $^7Li-^{19}F$ double-resonance solid-state NMR probe with a static solenoidal coil for a 600-MHz narrow-bore magnet was designed, constructed, and tested successfully.
Keywords
$^7Li-^{19}F$ double resonance; Solid-state NMR Probe; Lithium-Ion Battery (LIB); Electrode; Electrolyte;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Dinh, H.-C.; Mho, S.-I.; Yeo, I.-H. Electroanalysis 2011, 2079, 2086.
2 Grey, C. P.; Nicolas, D. Chem. Rev. 2004, 4493, 4512.
3 Rifat, A. M.; Hikmet, R. A. M. J. Power Sources 2001, 212, 220.
4 Thackeray, M. M.; Johnson, P. J.; De Picciotto, L. A.; Bruce, P. G.; Goodenough, J. B. Mater. Res. Bull. 1984, 19, 179.   DOI   ScienceOn
5 Ohzuku, T.; Kiagawa, M.; Hirai, T. J. Electrochem. Soc. 1990, 137, 769.   DOI
6 Tarascon, J. M.; Guyomard, D. Electrochim. Acta. 1993, 38, 1221.   DOI   ScienceOn
7 Raver, N.; Chouinard, Y.; Magnan, J. F.; Besner, S.; Gauthier, M.; Armand, M. J. Power Source 2001 503, 507.
8 Trease, N. M.; Thomas, K.; Koster, J.; Grey, C. P. Electrochemical Soc. 2001.
9 Nicolas, D.; Marine, C.; Dominique, G. Electrochemical Soc. 2001.
10 Song, S. W.; Zhuang, G. V.; Ross, P. N., Jr. J. Electrochem. Soc. 2004, A1162.
11 Meyer, B.; Leifer, N.; Sakamoto, S.; Greenbaum, S.; Grey, C. P. Electrochem. Solid-State Lett. 2005, A145.
12 Cross, V. R.; Hester, R. K.; Waugh, J. S. Rev. Sci. Ins. 1976, 1486, 1488.
13 Doty, F. D.; Inners, R. R.; Ellis, P. D. Journal of Magnetic Resonance 1981, 399, 416.
14 Jiang, Y. J.; Pugmire, R. J.; Grant, D. M. Journal of Magnetic Resonance 1987, 485, 494.
15 Wu, C. H.; Grant, C. V.; Cook, C. V.; Park, S. H.; Opella, S. J. J. Magn. Reson. 2009, 74.
16 Park, T. J.; Kim, J. S.; Um, S. H.; Kim, Y. Bull. Korean Chem. Soc. 2010, 1187, 1191.
17 Choi, S. S.; Jung, J. H.; Park, Y. G.; Park, T. J.; Park, G. H. J.; Kim, Y. Bull. Korean Chem. Soc. 2012, 1577, 1580.
18 Cross, V. R.; Hester, R. K.; Waugh, J. S. Review of Scientific Instruments 1976, 1486, 1488.
19 Doty, F. D.; Inners, R. R.; Ellis, P. D. Journal of Magnetic Resonance 1981, 399, 416.
20 Jiang, Y. J.; Pugmire, R. J.; Grant, D. M. Journal of Magnetic Resonance 1987, 485, 494.
21 Peter, L.; Eduard, G. K. Y.; Chekmenev, R. Fu.; Jun, H.; Cross, T. A.; Myriam, C.; William, W. Brey. Journal of Magnetic Resonance 2006, 9, 20.