Browse > Article
http://dx.doi.org/10.1016/j.jiec.2018.07.044

Selective doping of Li-rich layered oxide cathode materials for high-stability rechargeable Li-ion batteries  

Han, Dongwook (Department of Materials Science and Engineering, Hallym University)
Park, Kwangjin (Department of Mechanical Engineering, Gachon University)
Park, Jun-Ho (Energy Lab, Samsung Advanced Institute of Technology)
Yun, Dong-Jin (Analytical Science Lab, Samsung Advanced Institute of Technology)
Son, You-Hwan (Energy Lab, Samsung Advanced Institute of Technology)
Publication Information
Journal of Industrial and Engineering Chemistry / v.68, no., 2018 , pp. 180-186 More about this Journal
Abstract
We report the discovery of Li-rich $Li_{1+x}[(Ni_{0.225}Co_{0.15}Mn_{0.625})_{1-y}V_y]O_2$ as a cathode material for rechargeable lithium-ion batteries in which a small amount of tetravalent vanadium ($V^{4+}$) is selectively and completely incorporated into the manganese sites in the lattice structure. The unwanted oxidation of vanadium to form a $V_2O_5-like$ secondary phase during high-temperature crystallization is prevented by uniformly dispersing the vanadium ions in coprecipitated $[(Ni_{0.225}Co_{0.15}Mn_{0.625})_{1-y}V_y](OH)_2$ particles. Upon doping with $V^{4+}$ ions, the initial discharge capacity (>$275mA\;h\;g^{-1}$), capacity retention, and voltage decay characteristics of the Li-rich layered oxides are improved significantly in comparison with those of the conventional undoped counterpart.
Keywords
Lithium-rich layered oxide; Vanadium ion; Coprecipitation; Selective doping site; Rechargeable lithium-ion batteries;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. Armand, J.-M. Tarascon, Nature 451 (2008) 652.   DOI
2 B. Dunn, H. Kamath, J.-M. Tarascon, Science 334 (2011) 928.   DOI
3 J.B. Goodenough, Y. Kim, Chem. Mater. 22 (2010) 587.   DOI
4 H. Yang, S. Amiruddin, H.J. Bang, S.-K. Sun, J. Prakash, J. Ind. Eng. Chem. 12 (2006) 12.
5 K. Sun, C. Peng, Z. Li, Q. Xiao, G. Lei, Q. Xiao, Y. Ding, Z. Hu, RSC Adv. 6 (2016) 28729.   DOI
6 Z. Zheng, Z. Wu, Y. Zhong, C.-H. Shen, W. Hua, B.-B. Xu, C. Yu, B.-H. Zhong, X.-D. Guo, RSC Adv. 5 (2015) 37330.   DOI
7 Y. Cho, P. Oh, J. Cho, Nano Lett. 13 (2013) 1145.   DOI
8 J. Yan, X. Liu, B. Li, RSC Adv. 4 (2014) 63268.   DOI
9 A. Manthiram, J.C. Knight, S.-T. Myung, S.-M. Oh, Y.-K. Sun, Adv. Energy Mater. 6 (2016)1501010.   DOI
10 Z. Zheng, W.-B. Hua, C. Yu, B.-B. Xu, J.-Z. Wang, B.-H. Zhong, Z.-Y. Zhang, Dalton Trans. 44 (2015) 14255.   DOI
11 Y.N. Ko, J.H. Kim, J.-K. Lee, Y.C. Kang, J.-H. Lee, Electrochim. Acta 69 (2012) 345.   DOI
12 O. Sha, Z. Tang, S. Wang, W. Yuan, Q. Xu, L. Ma, Electrochim. Acta 77 (2012) 250.   DOI
13 B. Song, M.O. Lai, L. Lu, Electrochim. Acta 80 (2012) 187.   DOI
14 L.F. Jiao, M. Zhang, H.T. Yuan, M. Zhao, J. Guo, W. Wang, X.D. Zhou, Y.M. Wang, J. Power Sources 167 (2007) 178.   DOI
15 S.H. Park, Y.-K. Sun, J. Power Sources 119 (2003) 161.
16 M. Tabuchi, Y. Nabeshima, T. Takeuchi, H. Kageyama, J. Imaizumi, H. Shibuya, J. Akimoto, J. Power Sources 221 (2013) 427.   DOI
17 K.A. Jarvis, Z. Deng, L.F. Allard, A. Manthiram, P.J. Ferreira, Chem. Mater. 23 (2011) 3614.   DOI
18 M. Tabuchi, J. Power Sources 196 (2011) 3611.   DOI
19 Z. Tang, Z. Wang, X. Li, W. Peng, J. Power Sources 204 (2012) 187.   DOI
20 F. Kong, R.C. Longo, M.-S. Park, J. Yoon, D.-H. Yeon, J.-H. Park, W.-H. Wang, S. Kc, S.-G. Doo, K. Cho, J. Mater. Chem. A 3 (2015) 8489.   DOI
21 J. Kim, Solid State Ionics 164 (2003) 43.   DOI
22 C. Lu, S. Yang, H. Wu, Y. Zhang, X. Yang, T. Liang, Electrochim. Acta 209 (2016) 448.   DOI
23 H. Zhu, T. Xie, Z. Chen, L. Li, M. Xu, W. Wang, Y. Lai, J. Li, Electrochim. Acta 135 (2014) 77.   DOI
24 J. Gao, J. Kim, A. Manthiram, Electrochem. Commun. 11 (2009) 84.   DOI
25 A. Boulineau, L. Simonin, J.-F. Colin, E. Canevet, L. Daniel, S. Patoux, Chem. Mater. 24 (2012) 3558.   DOI