Browse > Article
http://dx.doi.org/10.5012/bkcs.2013.34.7.2162

The Effect of Low-Temperature Carbon Encapsulation on Si Nanoparticles for Lithium Rechargeable Batteries  

Jung, Jaepyeong (Department of Energy and Materials Engineering, Dongguk University-Seoul)
Song, Kyeongse (Department of Energy and Materials Engineering, Dongguk University-Seoul)
Kang, Yong-Mook (Department of Energy and Materials Engineering, Dongguk University-Seoul)
Publication Information
Abstract
The tailored surface modification of electrode materials is crucial to realize the wanted electronic and electrochemical properties. In this regard, a dexterous carbon encapsulation technique can be one of the most essential preparation methods for the electrode materials for lithium rechargeable batteries. For this purpose, DL-malic acid ($C_4H_6O_5$) was here used as the carbon source enabling an amorphous carbon layer to be formed on the surface of Si nanoparticles at enough low temperature to maintain their own physical or chemical properties. Various structural characterizations proved that the bulk structure of Si doesn't undergo any discernible change except for the evolution of C-C bond attributed to the formed carbon layer on the surface of Si. The improved electrochemical performance of the carbon-encapsulated Si compared to Si can be attributed to the enhanced electrical conductivity by the surface carbon layer as well as its role as a buffering agent to absorb the volume expansion of Si during lithiation and delithiation.
Keywords
Low-temperature carbon coating; DL-malic acid; Si; Anode; Lithium rechargeable batteries;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Tarascon, J. M.; Armand, M. Nature 2008, 451, 652.   DOI   ScienceOn
2 Maier, J. Nature Mater. 2005, 4, 805.   DOI   ScienceOn
3 Chen, J.; Xu, L.; Li, W.; Gou, X. Adv. Mater. 2005, 17, 582.   DOI   ScienceOn
4 Hossain, S.; Kim, Y. K.; Saleh, Y.; Loutfy, R. J. Power Sources 2006, 161, 640.   DOI   ScienceOn
5 Winter, M.; Besenhard, J. O.; Spahr, M. E.; Novak, P. Adv. Mater. 1998, 10, 725.   DOI   ScienceOn
6 Johnson, B. A.; White, R. E. J. Power Sources 1998, 70, 48.   DOI   ScienceOn
7 Obrovac, M. N.; Christensen, L. Electrochem. Solid-State Lett. 2004, 7, A93.   DOI
8 Niu, J. J.; Lee, J. Y. Electrochem. Solid-State Lett. 2002, 5, A107.   DOI   ScienceOn
9 Ng, S. H.; Wang, J. Z.; Wexler, D.; Konstantinov, K.; Guo, Z. P.; Liu, H. K. Angew. Chem. Int. Ed. 2006, 45, 6896.   DOI   ScienceOn
10 Holzapfel, M.; Buqa, H.; Scheifele, W.; Novak, P.; Petrat, F. M. Chem. Commun. 2005, 12, 1566.
11 Kang, Y. M.; Go, J. Y.; Lee, S. M.; Choi, W. U. Electrochem. Commun. 2007, 9, 1276.   DOI   ScienceOn
12 Kang, Y. M.; Lee, S. M.; Kim, S. J.; Jeong, G. J.; Sung, M. S.; Choi, W. U.; Kim, S. S. Electrochem. Commun. 2007, 9, 959.   DOI   ScienceOn
13 Zhang, W. M.; Hu, J. S.; Guo, Y. G.; Zheng, S. F.; Zhong, L. S.; Song, W. G.; Wan, L. J. Adv. Mater. 2008, 20, 1160.   DOI   ScienceOn
14 Lee, Y. M.; Kang, Y. M. J. Power Sources 2011, 196, 10686.   DOI   ScienceOn
15 Lee, Y. M.; Jo, M. R.; Song, K. S.; Nam, K. M.; Park, J. T.; Kang, Y. M. ACS Appl. Mater. Interfaces 2012, 4, 3459.   DOI   ScienceOn
16 Ji, L.; Zhang, Y. Energy Environ. Sci. 2011, 4, 3611.   DOI   ScienceOn
17 Chan, C. K.; Zhang, X. F.; Cui, Y. Nano Lett. 2008, 8, 307.   DOI   ScienceOn
18 Weydanz, W. J.; Wohlfahrt, M.; Huggins, R. A. J. Power Sources 1999, 81, 237.
19 Wolfenstine, J. J. Power Sources 1999, 79, 111.   DOI   ScienceOn
20 Peng, K.; Jie, J.; Zhang, W.; Lee, T. S. Appl. Phys. Lett. 2008, 93, 033105.   DOI   ScienceOn
21 Park, M. H.; Kim, M. G.; Joo, J.; Kim, K.; Kim, J.; Ahn, S.; Cui, Y.; Cho, J. Nano Lett. 2009, 9, 3844.   DOI   ScienceOn
22 Hatchard, T. D.; Dahn, J. R. J. Electrochem. Soc. 2004, 151, A838.   DOI   ScienceOn
23 Obrovac, M. N.; Krause, L. J. J. Electrochem. Soc. 2007, 154, A103.   DOI   ScienceOn
24 Park, M. S.; Rajendran, S.; Kang, Y. M.; Han, K. S.; Han, Y. S.; Lee, J. Y. J. Power Sources 2006, 158, 650.   DOI   ScienceOn
25 Park, M. S.; Kang, Y. M.; Rajendran, S.; Kwon, H. S.; Lee, J. Y. Mater. Chem. Phys. 2006, 496, 100.
26 Wang, C. S.; Wu, G. T.; Zhang, X. B.; Qi, Z. F; Li, W. Z. J. Electrochem. Soc. 1998, 145, 2751.   DOI   ScienceOn
27 Wilson, A. M.; Dahn, J. R. J. Electrochem. Soc. 1995, 142, 326.   DOI
28 Hu, Y. S.; Demir-Cakan, R.; Titirici, M. M.; Muller, J. O.; Schlogl, R.; Antonietti, M.; Maier, J. Angew. Chem. Angew. Chem. Int. Ed. 2008, 120, 1669.   DOI   ScienceOn
29 Park, M. S.; Wang, G. X.; Kang, Y. M.; Wexler, D.; Dou, S. X.; Liu, H. K. Chem. Angew. Chem. Int. Ed. 2007, 46, 750.   DOI   ScienceOn
30 Meiera, C.; Luttjohanna, S.; Kravetsa, V. G.; Nienhausa, H.; Lorkea, A.; Wiggersb, Hartmut. Physica E 2006, 32, 155.   DOI   ScienceOn
31 Pasteris, J. D.; Wopenka, B. Astrobiology 2003, 3, 727.   DOI   ScienceOn
32 Yang, C. J.; Jiang, J. L.; Ping, D. J.; Fei, Z. H. Chin. Phys. Lett. 2008, 25, 780.   DOI   ScienceOn
33 Kang, K.; Lee, H.; Han, D.; Kim, G.; Lee, D.; Lee, G.; Kang, Y. M.; Jo, M. Appl. Phys. Lett. 2010, 96, 053110.   DOI   ScienceOn
34 Park, M. S.; Kang, Y. M.; Kim, J. H.; Wang, G. X.; Dou, S. X.; Liu, H. K. Carbon 2008, 46, 35.   DOI   ScienceOn
35 Hassan, M. F.; Guo, Z. P.; Chen, Z.; Liu, H. K. J. Power Sources 2010, 195, 2372.   DOI   ScienceOn