• Title/Summary/Keyword: Receptor protein

Search Result 2,396, Processing Time 0.027 seconds

Binding Interaction Analysis of Neuromedin U Receptor 1 with the Native Protein Neuromedin U

  • Nagarajan, Santhosh Kumar;Madhavan, Thirumurthy
    • Journal of Integrative Natural Science
    • /
    • v.10 no.1
    • /
    • pp.14-19
    • /
    • 2017
  • Neuromedin, a neuropeptide, which is involved in various functions that include contractile activity on smooth muscle, controlling the blood flow and ion transport in the intestine, increased blood pressure and regulation of adrenocortical function. It is involved in the pathophysiology of various immune mediated inflammatory diseases like asthma. In this study, we have performed protein-protein docking analysis of neuromedin U - neuromedin U receptor 1 complex. We have developed homology models of neuromedin U, and selected a reliable model using model validation. The model was docked with the receptor model, to analyse the crucial interactions of the complex. This study could be helpful as a tool in developing novel and potent drugs for the diseases related with neuromedin U receptor 1.

Identification of Certain Sequences in the 3rd Cytoplasmic Loop of$D_4$ Dopamine Receptor that Suppress the Bacterial Expression

  • Cheong, Ji-Sook;Kim, Ae-Young;Kim, Kyeong-Man
    • Archives of Pharmacal Research
    • /
    • v.19 no.4
    • /
    • pp.275-279
    • /
    • 1996
  • To study the functional roles of dopamine receptors, we decided to raise antibodies against these proteins. To make antigen, we expressed the whole 3rd cytoplasmic loop of dopamine receptors in a fusion protein with glutathione-S-transferase (GST). $For D_2\; and\; D_3$ receptors, it was successful to express and purify fusion proteins for the whole 3rd cytoplasmic loops. However, we could not express the fusion protein for the whole 3rd cytoplasmic loop of $D_4$ dopamine receptor in the bacteria. To study the causes that prevent the bacterial expression of the GST-fusion protein of the 3rd cytoplasmic loop of $D_4$ dopamine receptor, we conducted more detailed studies on $D_4$ dopamine receptor. To locate the region which prevents bacterial expression, we made sequential constructs in the 3rd cytoplasmic loop decreasing the size step by step, and confirmed their expressions in the SDS PAGE. It was found that certain regions of 3rd cytoplasmic loop of $D_4$ dopamine receptor, located in N-terminal side of the 3rd cytoplasmic loop of $D_4$ dopamine receptor suppress the bacterial expression of fusion protein.

  • PDF

Role of Helix 8 in Dopamine Receptor Signaling

  • Yang, Han-Sol;Sun, Ningning;Zhao, Xiaodi;Kim, Hee Ryung;Park, Hyun-Ju;Kim, Kyeong-Man;Chung, Ka Young
    • Biomolecules & Therapeutics
    • /
    • v.27 no.6
    • /
    • pp.514-521
    • /
    • 2019
  • G protein-coupled receptors (GPCRs) are membrane receptors whose agonist-induced dynamic conformational changes trigger heterotrimeric G protein activation, followed by GRK-mediated phosphorylation and arrestin-mediated desensitization. Cytosolic regions of GPCRs have been studied extensively because they are direct contact sites with G proteins, GRKs, and arrestins. Among various cytosolic regions, the role of helix 8 is least understood, although a few studies have suggested that it is involved in G protein activation, receptor localization, and/or internalization. In the present study, we investigated the role of helix 8 in dopamine receptor signaling focusing on dopamine D1 receptor (D1R) and dopamine D2 receptor (D2R). D1R couples exclusively to Gs, whereas D2R couples exclusively to Gi. Bioinformatic analysis implied that the sequences of helix 8 may affect GPCR-G protein coupling selectivity; therefore, we evaluated if swapping helix 8 between D1R and D2R changed G protein selectivity. Our results suggest that helix 8 is not involved in D1R-Gs or D2R-Gi coupling selectivity. Instead, we observed that D1R with D2R helix 8 or D1R with an increased number of hydrophobic residues in helix 8 relative to wild-type showed diminished ${\beta}$-arrestin-mediated desensitization, resulting in increased Gs signaling.

Role of G Protein-Coupled Estrogen Receptor in Cancer Progression

  • Jung, Joohee
    • Toxicological Research
    • /
    • v.35 no.3
    • /
    • pp.209-214
    • /
    • 2019
  • Cancer is the leading cause of mortality worldwide. In cancer progression, sex hormones and their receptors are thought to be major factors. Many studies have reported the effects of estrogen and estrogen receptors (ERs) in cancer development and progression. Among them, G protein-coupled estrogen receptor (GPER), a G protein-coupled receptor, has been identified as an estrogen membrane receptor unrelated to nuclear ER. The mechanism of GPER, including its biological action, function, and role, has been studied in various cancer types. In this review, we discuss the relation between GPER and estrogen or estrogen agonists/antagonists and cancer progression.

Molecular Cloning and Recombinant Expression of the Long Form of Leptin Receptor (Ob-Rb) cDNA as Isolated from Rat Spleen

  • Ju, Sung-Kyu;Park, Jung-Hyun;Na, Shin-Young;You, Kwan-Hee;Kim, Kil-Lyong;Lee, Myung-Kyu
    • BMB Reports
    • /
    • v.34 no.2
    • /
    • pp.156-165
    • /
    • 2001
  • Leptin is a circulating non-glycosylated protein that is mainly produced in adipocytes. Leptin acts in the brain to regulate food intake and energy expenditure. Previously we reported our success in the isolation of a partial cDNA of the long form of the leptin receptor, OB-Rb, from rat spleen, and showed that leptin might also play a role in peripheral immune organs. In the present study, for the first time, the complete coding region of OB-Rb cDNA was cloned from rat splenocytes, and its nucleotide sequence was determined. The cDNA was then further expressed in E. coli and mammalian cells, thereby confirming the functional integrity of this receptor. Prokaryotically overexpressed OB-R protein was then used as an immunizing antigen in BALE/c mice to produce leptin receptor-specific antibodies. By using them, we confirmed the cell surface expression of OB-Rb in transfected CHO cells. It is our belief that the reagents, as produced in this study, will be of great use in further studies of the biological role of rat leptin.

  • PDF

Molecular cloning and nucleotide sequence of schizosaccharomyces pombe Homologue of the receptor for activated protein kinase C gene

  • Park, Seung-Keil;Yoo, Hyang-Sook
    • Journal of Microbiology
    • /
    • v.33 no.2
    • /
    • pp.128-131
    • /
    • 1995
  • Using differential hybridization, we selected the prk gene fortuitously from Schizosaccharomyces pombe homologous to RACK1 of rat which encodes the receptor for activated protein kinase C. The cDNA sequence of prk was determined and its deduced amino acid sequence was 76% homologous to RACK1 and had the feature of trimeric G protein bata subunit. The specific amino acid sequences required for the protein kinase C binding were also present in Prk as in the case of RACK1 protein. From these similarities, we suggest that the Prk is protein kinase C binding protein of S. prombe. The involvement of Prk in signal transduction mediated by protein kinase C remained to be studied.

  • PDF

Studies on the receptor for bacteriophage N4 infection (Bacteriophage N4의 receptor에 대한 연구)

  • 채건상;김선정;김창수;유욱준
    • Korean Journal of Microbiology
    • /
    • v.25 no.1
    • /
    • pp.52-56
    • /
    • 1987
  • The evidences that Lam B protein of E. coli is used as a receptor for infections of bacteriophage N4 as well as bacteriophage lambda were obtained from the following experimental results. First, all of the isolated lambda resistant dlones possessing foreign DNA fragments in the plasmids were also resistant to bacteriophage N4, but not to bacteriophage $\phi$ 80, T4 and T7. Second, when the plasmid DNA was treated with various restriction enzymes and ligated to delete the total or a portion of the foreign DNA fragments, the deleted plasmids lost the resistant activities to lambda and N4, simultaneously. Third, after amplification of Lam B protein about 200 times by inducing the protein using maltose as a sole carbon source, the host E. coli became sensitive to both lambda and N4.

  • PDF

N-Terminal Amino Acid Sequences of Receptor-Like Proteins that Bind to preS1 of HBV in HepG2 Cells

  • Lee, Dong-Gun;Liu, Ming-Zhu;Kim, Kil-Lyong;Hahm, Kyung-Soo
    • BMB Reports
    • /
    • v.29 no.2
    • /
    • pp.180-182
    • /
    • 1996
  • One of the essential functions of virus surface proteins is the recognition of specific receptors on target cell membranes, and cellular receptors play an important role in viral pathogenesis. But the earliest steps of hepatitis B virus (HBV) infection, such as hepatocyte receptor interaction with the virus, are poorly understood. Previous work has suggested an important role of the preS1 region of HBV envelope protein in mediating viral binding to hepatocytes. Although hepatitis B virus (HBV) infection appears to be initiated by specific binding of virions to cell membrane structures via one or potentially several viral surface proteins, data showing the identification or isolation of the HBV receptor (s) are not yet available. The receptor-like proteins on the plasma membrane surface of HepG2 cells that bind to PreS1 were separated and identified using affinity chromatography, and the amino-terminal amino acid sequences of the receptor-like proteins were determined.

  • PDF

Expression and Receptor Binding Activity of Fusion Protein from Transforming Growth Factor-${/beta}1$ and GFP

  • Yoon, Jun-Ho;Kim, Pyeung-Hyeun;Chun, Gie-Taek;Choi, Eui-Yul;Yie, Se-Won
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.1
    • /
    • pp.65-70
    • /
    • 2002
  • A TGF-${\beta}1$/GFP monomeric fusion protein was cloned from pPK9A and pGFP-Cl plasmid by PCR amplification. The fusion protein was expressed in a $Bac-To-Bac^{TM}$ baculovirus expression system. A 45 kDa fusion protein was purified using an Ni-NTA column with 300 mM imidazol from a cell lysate infected with recombinant viruses for 72 h post-infection. The fusion protein cross-reacted with the commercial $TGF-{\beta}1$ polyclonal Ab as well as Ab raised against a precursor, monomeric $TGF-{\beta}1$, and GFP. The binding activity of the fusion protein with a $TGF-{\beta}1$ receptor was examined. Fluorescence was observed in Mv1Lu cells, yet not in insect cells treated with the fusion protein. No fluorescence was detected in Mv1Lu cells incubated with the fusion protein treated with Ab prior to the binding reaction, or with GFP alone, thereby indicating that the binding of the fusion protein was specific to $TGF-{\beta}1$ with a receptor.

Functional analysis of the rice BRI1 receptor kinase (벼 Brassinosteroid Insensitive 1 Receptor Kinase의 기능에 관한 연구)

  • Yeon, Jinouk;Kim, Hoy-Taek;Nou, Ill-Sup;Oh, Man-Ho
    • Journal of Plant Biotechnology
    • /
    • v.43 no.1
    • /
    • pp.30-36
    • /
    • 2016
  • Brassinosteroids (BRs) are essential plant steroid hormones required for cell elongation, plant growth, development and abiotic and biotic stress tolerance. BRs are recognized by BRI1 receptor kinase that is localized in the plasma membrane, and the BRI1 protein will eventually autophosphorylate in the intracellular domain and transphosphorylate BAK1, which is a co-receptor in Arabidopsis thaliana. However, little is known of the role OsBRI1 receptor kinase plays in Oryza sativa, monocotyledonous plants, compared to that in Arabidopsis thaliana, dicotyledonous plants. As such, we have studied OsBRI1 receptor kinase in vitro and in vivo with recombinant protein and transgenic plants, whose phenotypes were also investigated. A OsBRI1 cytoplasmic domain (CD) recombinant protein was induced in BL21 (DE3) E.coli cells with IPTG, and purified to obtain OsBRI1 recombinant protein. Based on Western blot analysis with phospho-specific pTyr and pThr antibodies, OsBRI1 recombinant protein and OsBRI1-Flag protein were phosphorylated on Threonine residue(s), however, not on Tyrosine residue(s), both in vitro and in vivo. This is particularly intriguing as AtBRI1 protein was phosphorylated on both Ser/Thr and Tyr residues. Also, the OsBRI1 full-length gene was expressed in, and rescued, bri1-5 mutants, such as is seen in normal wild-type plants where AtBRI1-Flag rescues bri1-5 mutant plants. Root growth in seedlings decreased in Ws2, AtBRI1, and 3 independent OsBRI1 transgenic seedlings and had an almost complete lack of response to brassinolide in the bri1-5 mutant. In conclusion, OsBRI1, an orthologous gene of AtBRI1, can mediate normal BR signaling for plant growth and development in Arabidopsis thaliana.