• Title/Summary/Keyword: Receiver Operation

Search Result 360, Processing Time 0.026 seconds

8.2-GHz band radar RFICs for an 8 × 8 phased-array FMCW receiver developed with 65-nm CMOS technology

  • Han, Seon-Ho;Koo, Bon-Tae
    • ETRI Journal
    • /
    • v.42 no.6
    • /
    • pp.943-950
    • /
    • 2020
  • We propose 8.2-GHz band radar RFICs for an 8 × 8 phased-array frequency-modulated continuous-wave receiver developed using 65-nm CMOS technology. This receiver panel is constructed using a multichip solution comprising fabricated 2 × 2 low-noise amplifier phase-shifter (LNA-PS) chips and a 4ch RX front-end chip. The LNA-PS chip has a novel phase-shifter circuit for low-voltage operation, novel active single-to-differential/differential-to-single circuits, and a current-mode combiner to utilize a small area. The LNA-PS chip shows a power gain range of 5 dB to 20 dB per channel with gain control and a single-channel NF of 6.4 dB at maximum gain. The measured result of the chip shows 6-bit phase states with a 0.35° RMS phase error. The input P1 dB of the chip is approximately -27.5 dBm at high gain and is enough to cover the highest input power from the TX-to-RX leakage in the radar system. The gain range of the 4ch RX front-end chip is 9 dB to 30 dB per channel. The LNA-PS chip consumes 82 mA, and the 4ch RX front-end chip consumes 97 mA from a 1.2 V supply voltage. The chip sizes of the 2 × 2 LNA-PS and the 4ch RX front end are 2.39 mm × 1.3 mm and 2.42 mm × 1.62 mm, respectively.

Design of Receiver Architecture for HomePNA 2.0 Modem (HomePNA 2.0 모뎀 수신부 설계)

  • Choi, Sung-Woo;Kim, Jong-Won
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.9A
    • /
    • pp.991-997
    • /
    • 2004
  • In this paper, we propose the architecture of modem receiver to fabricate HomePNA 2.0 chip. HomePNA suffers from inferior channel because of bridge tap, the effect of amateur HAM band and so on. To transfer data over such channel, HomePNA 2.0 uses training sequence to equalize channel and uses FD-QAM optionally as modulation method. So modem receiver demodulate QAM based signal and needs optimum architecture that fully uses these transmission feature. As a result of research, we define 2 mode function of modem receiver depending on TX/RX state. In this paper, particularly, we show the algorithm of equalizer, carrier phase recovery and frame synchromzationblock and propose architecture that improve the performance of channel equalization and is stable in operation. In the end, we estimate the performance of proposed HomePNA2.0 modem receiver over HomePNA TEST LOOP using SPW program.

Design and Implementation of USB Interface Bridge for PC-based DAB Receiver (PC-based DAB 수신기용 USB Interface Bridge 설계 및 구현)

  • Park, Nho-Kyung;Jin, Hyun-Joon;Park, Sang-Pong;Kim, Sang-Pok;Han, Sung-Ho;Lee, Sang-Chul
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.2A
    • /
    • pp.90-97
    • /
    • 2005
  • Generally, DAB systems are divided into two categories, a stand-alone type and a PC/PDA-based type. The PC/PDA-based type has less mobility comparing to the stand-alone type, nevertheless, it has the advantage of using memory, audio/video decoder, or other resources of PC/PDA. The DAB receiver implemented in this paper is a PC-based receiver system employing USB interface. The USB interface bridge is designed using FPGA and EZ-USB development kit and the implemented DAB receiver adopts the bridge and makes use of the stand-alone typed DRK-026 receiver for experiments. The USB interface bridge transforms serial data into USB packets and all of related signals are controlled by hardware logics. The operation of the implemented DAB receiver is verified by sending audio data into the PC for decoding through USB interface bridge.

Transform Methods for PAM Signals as Asymmetric Distribution and Performance Comparison of Bicepstrum Blind Equalizer using Asymmetric Distribution (PAM 신호의 비대칭 분포를 형성하기 위한 방법과 이를 이용한 3차 통계 자력 등화기의 성능 비교)

  • 정교일;임제택
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.6
    • /
    • pp.54-63
    • /
    • 1996
  • We propose a 3rd order blind equalizer that incorporates a new transform method using either square root operation ($\sqrt{x]$) or reciprocal operation (1/x) in order to transform symmetric distribution of PAM signals at the transmitter, to asymmetric one. At the receiver, either the square operation or the reciprocal operation is needed to recover the asymmetrically transformed signals to the original ones after eualization. The reslts of the computer simulation, using the new method are better than the existing transform method using natural logarithm operation by the maximum of 8 dB in MSE. In addition, as the skewness of the asymmetrically transformed distribution has small values, the performances are improved.

  • PDF

GOES-9 GVAR Imager Processing System Development by KARI

  • Ahn, S.I.;Koo, I.H.;Yang, H.M.;Hyun, D.H.;Park, D.J.;Kang, C.H.;Kim, D.S.;Choi, H.J.;Paik, H.Y.
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.31-33
    • /
    • 2003
  • Recently, KARI developed in-house meteorological sensor processing system named MESIS for GOES GVAR 5-CH Imager for better KOMPSAT EOC mission operation. MESIS consists of antenna system, receiver, serial telemetry card, processing and mapping software, and 2 NT PC systems. This paper shows system requirement, system design, characteristic and test results of processing system. System operation concept and sample image are also provided. Implemented system was proven to be fully operational through lots of operations covering from RF signal reception to web publishing.

  • PDF

A Coherent-based Symbol Detector for 2.45GHz LR-WPAN Receiver (2.45GHz LR-WPAN 수신기를 위한 Coherent 기반의 Symbol Detector)

  • Han Jung-Su;Do Joo-Hyun;Park Tha-Joon;Choi Hyung-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.2A
    • /
    • pp.176-186
    • /
    • 2006
  • In this paper, we propose an enhanced symbol detector algorithm for 2.45GHz LR-WPAN(Low-Rate Wireless Personal Area Network) receiver. Because the frequency offset of $\pm$80ppm on 2.45GHz band is recommended in IEEE 802.15.4 LR-WPAN(Low-Rate Wireless Personal Area Network) specification, a symbol detector algorithm having stable operation in the channel environment with large frequency offset is required. For robustness to the frequency offset, non-coherent detection-based symbol detector algorithm is typically applied in the LR-WPAN receiver modem. However, the noncoherent symbol detector has increased performance degradation and hardware complexity due to squaring loss of I/Q squaring operation. Therefore we propose a coherent detection-based symbol detector algorithm with frequency offset compensation using a preamble symbol. The proposed algorithm is more suitable for LR-WPAN receiver aimed at low-cost, low-power and low-complexity than the non-coherent symbol detector, since it can reduce performance degradation due to squaring loss of I/Q squaring operation and implementation complexity. Simulation results show that the proposed algorithm has performance improvement of about 1dB in various channel environments.

Accuracy Evaluation of Critical Rainfall for Inundation Using ROC Method (ROC 기법을 이용한 침수유발 한계강우량 정확도 산정)

  • Chu, Kyung Su;Lee, Seok Ho;kang, Dong Ho;Kim, Byung Sik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.367-367
    • /
    • 2019
  • 최근 기후변화로 인해 국지성 호우 및 태풍의 빈도가 빈발하고 및 규모가 커지고 있으며 그로 인한 홍수피해규모는 증가하고 있다. 본 논문에서는 도시 지역의 호우로 인한 침수유발 강우량을 산정하는 기법의 정확도를 산정하는데 목적이 있으며 이를 위해 ROC(Receiver Operation Characteristic Curve) 분석을 이용하였다. 본 논문에서는 분포형 홍수해석 모형인 S-RAT 모형과 2차원 침수해석 모형 FLO-2D을 커플링하여 호우로 인한 침수해석을 실시하였으며 강우시나리오는 설계 강우 200mm의 강우를 10% 간격으로 증가시켜 강우량 대비 침수심 자료를 모의하였다. 모의한 침수심 자료를 이용하여 유역 격자를 $1km{\times}1km$ 별 강우량-침수심 관계곡선식을 제시하였으며 개발된 곡선식을 이용하여 특정 침수심(20cm)을 유발시키는 강우량(한계강우량)을 산정하였다. 정확도 산정은 ROC(Receiver Operation Characteristic Curve) 분석 방법을 이용하여 침수 유무의 적중률에 따른 민감도와 특이도를 이용하여 AUC(Area Under the Curve)의 점수로 정확도를 판단하였다. 본 논문에서는 본 논문에서 제시한 한계강우량의 정확도를 판단하기 위하여 2011년 7월의 사당역 일대 침수사례를 이용하였다. 실제 침수정보가 없어 실제 호우사상과 실제 하수관망을 고려할 수 있는 SWMM 모형을 이용하여 침수분석을 실시하였다. 분석 결과 평균 ROC는 약 0.7로 나타났으며 5 단계의 구분에서 Fair 단계로 적정 수준의 정확도를 확보한 것으로 나타났다.

  • PDF

A Highly Expandable Forwarded-Clock Receiver with Ultra-Slim Data Lane using Skew Calibration by Multi-Phase Edge Monitoring

  • Yoo, Byoung-Joo;Song, Ho-Young;Chi, Han-Kyu;Bae, Woo-Rham;Jeong, Deog-Kyoon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.12 no.4
    • /
    • pp.433-448
    • /
    • 2012
  • A source-synchronous receiver based on a delay-locked loop is presented. It employs a shared global calibration control between channels, yet achieves channel expandability for high aggregate I/O bandwidth. The global calibration control accomplishes skew calibration, equalizer adaptation, and phase lock of all the channels in a calibration period, resulting in the reduced hardware overhead and area of each data lane. In addition, the weight-adjusted dual-interpolating delay cell, which is used in the multiphase DLL, guarantees sufficient phase linearity without using dummy delay cells, while offering a high-frequency operation. The proposed receiver is designed in the 90-nm CMOS technology, and achieves error-free eye openings of more than 0.5 UI across 9-28 inch Nelco4000-6 microstrips at 4-7 Gb/s and more than 0.42 UI at data rates of up to 9 Gb/s. The data lane occupies only $0.152mm^2$ and consumes 69.8 mW, while the rest of the receiver occupies $0.297mm^2$ and consumes 56.0 mW at the 7- Gb/s data-rate and supply voltage of 1.35 V.

A Study on Receiver Sensitivity Measurement using Pilot $E_c/I_o$ Compensation Method at CDMA Communication Network (CDMA 기지국에서 Pilot $E_c/I_o$ 보상기법을 이용한 수신감도 측정에 관한 연구)

  • Jeong, Ki-Hyeok;Ra, Keuk-Hwan
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.8
    • /
    • pp.9-16
    • /
    • 2007
  • Currently, the measurement of RF parameters for a base station in operation is typically limited to easily measured forward path items. In this paper, the forward monitoring ports of base stations are used to measure the reverse RF performance. The system has been implemented and effectiveness has been proven on an operating base station. The receiver sensitivity is measured using an internal CDMA modem which is used to monitor the output power based on closed loop power control when the modem is connected to the base station via a voice call. In order to improve accuracy, in addition to the modem Tx adjust(TxAdj) parameter, the detector's actual measurement is used. For accurate receiver sensitivity, the measurement should be made when there is no traffic which is not possible on an operating base station. Therefore, pilot channel chip energy to received signal power spectral density ratio$(E_c/I_o)$ compensation method is used to offset the receiver sensitivity degradation with voice traffic increase.

Performance of the CDMA Receiver with PN Sequence Orthogonal Reception Process (PN 부호의 직교 수신 방식을 이용한 CDMA 수신기 성능)

  • Hyun, Kwang-Min;Yoon, Dong-Weon;Park, Sang-Kyu
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.4A
    • /
    • pp.200-207
    • /
    • 2003
  • This paper proposes a CDMA receiver structure with time-shifted m-sequence orthogonal reception process, and analyzes the output SNR performance and the characteristics of the orthogonal receiver. This structure can be simply implemented with the converntional receiver adding an additional integrator path in parallel and an adder sums the conventional path and the new path output signals. The structure provides to reference user signal not only increment of signal component but also perfect orthogonal characteristic, canceling the accumulated cross-correlated value out to zero between the reference user and other user signals. Hence, the proposed structure can be applied for channel impulse response measurement, and used for multi-user interference signal cancellation and channel capacity increment by flexible structural inter-working operation of the added path, connection or disconnection, to conventional receiver structure.