• Title/Summary/Keyword: Rebars

Search Result 300, Processing Time 0.026 seconds

Computationally efficient 3D finite element modeling of RC structures

  • Markou, George;Papadrakakis, Manolis
    • Computers and Concrete
    • /
    • v.12 no.4
    • /
    • pp.443-498
    • /
    • 2013
  • A detailed finite element modeling is presented for the simulation of the nonlinear behavior of reinforced concrete structures which manages to predict the nonlinear behavior of four different experimental setups with computational efficiency, robustness and accuracy. The proposed modeling method uses 8-node hexahedral isoparametric elements for the discretization of concrete. Steel rebars may have any orientation inside the solid concrete elements allowing the simulation of longitudinal as well as transverse reinforcement. Concrete cracking is treated with the smeared crack approach, while steel reinforcement is modeled with the natural beam-column flexibility-based element that takes into consideration shear and bending stiffness. The performance of the proposed modeling is demonstrated by comparing the numerical predictions with existing experimental and numerical results in the literature as well as with those of a commercial code. The results show that the proposed refined simulation predicts accurately the nonlinear inelastic behavior of reinforced concrete structures achieving numerical robustness and computational efficiency.

Magnetic Resonance-Based Wireless Power Transmission through Concrete Structures

  • Kim, Ji-Min;Han, Minseok;Sohn, Hoon
    • Journal of electromagnetic engineering and science
    • /
    • v.15 no.2
    • /
    • pp.104-110
    • /
    • 2015
  • As civil infrastructures continue to deteriorate, the demand for structural health monitoring (SHM) has increased. Despite its outstanding capability for damage identification, many conventional SHM techniques are restricted to huge structures because of their wired system for data and power transmission. Although wireless data transmission using radio-frequency techniques has emerged vis-$\grave{a}$-vis wireless sensors in SHM, the power supply issue is still unsolved. Normal batteries cannot support civil infrastructure for no longer than a few decades. In this study, we develop a magnetic resonance-based wireless power transmission system, and its performance is validated in three different mediums: air, unreinforced concrete, and reinforced concrete. The effect of concrete and steel rebars is analyzed.

Nonlinear Analysis of R/C Shear Walls Subjected to Inelastic Cyclic Loads by finite Element Mettled (비탄성 반복하중을 받는 철근콘크리트 전단벽의 비선형 유한요소 해석)

  • 윤현도;오영훈;최창식;이리형
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1990.10a
    • /
    • pp.55-60
    • /
    • 1990
  • The objective of this study is to predict the nonlinear behavior of reinforced concrete shear walls, with the reinforcement uniformly distributed, under reversed cyclic loads. This study introduces joint Element Model which formulates the pulling out of rebars, slipping and intrusion of junction planes. The applicability of this study was experimental verfied by specimens SW1, SW2 and SW3 tested by authors, Wall1 by Paulay, SW16 and SW19 by Sheu. In almost specimen, the ratio of analytical to experimental maximum shear stress is within approximately 5%. In case of energy dissipation and maximum drift, the analytical results fully coincide with those of experiment.

  • PDF

An Experimental Study on the Bond Characteristics of GFRP Rebar to Concrete Produced by RTM (Resin Transfer Molding) Process (RTM 공정에 의해 생산된 GFRP 보강근의 콘크리트 부착특성에 관한 실험연구)

  • Park Ji-Sun;You Young-Chan;Park Young-Hwan;You Young-Jun;Kim Hyeong-Yeol;Kim Keung-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.297-300
    • /
    • 2005
  • The bond characteristics of GFRP(glass fiber reinforced polymer) rods with various surface deformation produced by RTM(resin transfer molding) process were analyzes experimentally. Two types of GFRP rods with different surface deformation manufactured by RTM process in domestic area and two types of GFRP rebars imported were considered in this study. All testing procedures including specimens preparation, set-up of test equipments and measuring devices were made according to the CSA S806-02 recommendations. From the test results, it was found that deformed-type GFRP rod manufactured by RTM process showed the highest bond strength among test specimen. But, wave-type GFRP rod made by RTM process show the lowest value due to the splitting failure of concrete caused by the wedge action of waved surfaces on GFRP rods.

  • PDF

Bond Test of GFRP Rebars with Shape and Surface Treatments (형상과 표면처리에 따른 GFRP 바의 부착성능)

  • You Young Jun;Park Ji-Sun;Park Young-Hwan;You Young-Chan;Kim Keung-Hwan;Kim Hyeong-Yeol
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.329-332
    • /
    • 2005
  • R.C. bridges may require strengthening during the service life. The main cause of durability problem of R.C. bridges is the corrosion of reinforcing steel. For this reason, researches to solve the problem have been conducted but the achievements are just for improving, not the solution. Fiber Reinforced Polymers are recognized as the alternative materials for solving the problem due to the excellent corrosion-resistant property, light-weight and higher strength than steel. This paper presents experimental results and theoretical consideration of bond test for new type GFRP rebar

  • PDF

Case Studies of Safety Diagnosis by GPR (GPR에 의한 안전진단 사례)

  • 한자경;최광철
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.12a
    • /
    • pp.169-180
    • /
    • 1999
  • Ground penetrating radar(GPR) uses radio waves to detect buried objects in any non-metallic material. Initially it was used to detect structures in ice. GPR has evolved to include the penetration of soils, rocks and man-made structures. GPR uses a sensitive detector to record weak radio waves reflected from objects embedded in the material under investigation. In this study, the GPR is applied to outside plant telecommunication facilities such as cable tunnels, manholes and underground conduits and model experiments to obtain radar characteristics. The thickness and soundness of tunnel lining can be evaluated, and the location of rebars and steel ribs can also be found effectively. The location of underground conduits as well as manholes can be found and the results of GPR give good coincidence with design drawings. In order to investigate the tunnel lining, the GPR mounted vehicle is developed and it is proved that the vehicle can save time and manpower.

  • PDF

Analysis of Chemical Components and Microstructure Characteristics of CBS Dust (CBS-Dust의 화학성분 및 미세구조 특성 분석)

  • Han, Jun-Hui;Lee, Young-Jun;Hyun, Seung-Yong;Lee, Dong-Joo;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.05a
    • /
    • pp.180-181
    • /
    • 2019
  • In this study, in order to find new uses for CBS dust, the chemical components of CBS dust were analyzed and effectively proposed a method. Chemical analysis shows that CBS dust contains a large amount of alkali in addition to chloride therefore, if CBS dust is used for secondary concrete products that use high amounts of mixed materials without rebars, it will be found that it can be used effectively for enhancing strength by active alkali.

  • PDF

Design of Carbon-Glass Hybrid Composite Rebar by the Combined Pultrusion and Winding (풀트루젼과 와인딩 기법을 혼합한 탄소-유리 하이브리드 복합재 보강근 설계)

  • Kweon Jin-Hwe;Choi Soo-Young;Choi Jin-Ho;Lee Sang-Gwan;Park Young-Hwan
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.9-12
    • /
    • 2004
  • Presented is a preliminary design concept of the carbon-glass hybrid composite rebars for the application in the construction field. A glass fiber rod with indentation is used for the core of the rebar. Carbon fibers are placed over the glass core by pultrusion. To increase the mechanical locking force and bonding surface, carbon filament windings are added in the hoop direction over the carbon face. Finite element analysis and test were conducted to evaluate the effective stiffness and strength of the rods. The results show that the effective axial stiffness of the rebar with indentation are about $50\%$ of the straight rebar.

  • PDF

Effects of tensile softening on the cracking resistance of FRP reinforced concrete under thermal loads

  • Panedpojaman, Pattamad;Pothisiri, Thanyawat
    • Structural Engineering and Mechanics
    • /
    • v.36 no.4
    • /
    • pp.447-461
    • /
    • 2010
  • Fiber reinforced polymer (FRP) bars have been widely used as reinforcement for concrete structures. However, under elevated temperatures, the difference between the transverse coefficients of thermal expansion of FRP rebars and concrete may cause the splitting cracks of the concrete cover. As a result, the bonding of FRP-reinforced concrete may not sustain its function to transfer load between the FRP rebar and the surrounding concrete. The current study investigates the cracking resistance of FRP reinforced concrete against the thermal expansion based on a mechanical model that accounts for the tensile softening behavior of concrete. To evaluate the efficacy of the proposed model, the critical temperature increments at which the splitting failure of the concrete cover occurs and the internal crack radii estimated are compared with the results obtained from the previous studies. Simplified equations for estimating the critical temperature increments and the minimum concrete cover required to prevent concrete splitting failure for a designated temperature increment are also derived for design purpose.

Strength and Ductility of High-Strength Reinforced Concrete Columns under Uniaxial Loads (중심 축력을 받는 고강도 철근 콘크리트 기둥의 내력 및 연성에 관한 연구)

  • 이강건;이재연;김성수;이리형
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1990.10a
    • /
    • pp.57-62
    • /
    • 1990
  • This paper is to study the effect of rectilinear confinement in high-strength concrete subjected to a monotonically increasing compressive axial loads. To investigate behavior of columns rectilinearly confined with lateral ties and longitudinal rebars, twelve specimens including two plain concrete specimens were tested. The main variables in this study are volumetric ratio of lateral ties, cistribution of lateral ties, yield strength of logitudinal steel, ratio of area of longitudinal steel to the area of cross section. The test results were not only compared with an empirical model for the stress-strain curve of rectilinearly confined high-strength concrete but also the existing model. The empirical model used calculating column capacity shows better agreement with the test results tham the existing model.

  • PDF