Browse > Article
http://dx.doi.org/10.12989/cac.2013.12.4.443

Computationally efficient 3D finite element modeling of RC structures  

Markou, George (Alhosn University, Department of Civil Engineering)
Papadrakakis, Manolis (Institute of Structural Analysis & Seismic Research, National Technical University of Athens)
Publication Information
Computers and Concrete / v.12, no.4, 2013 , pp. 443-498 More about this Journal
Abstract
A detailed finite element modeling is presented for the simulation of the nonlinear behavior of reinforced concrete structures which manages to predict the nonlinear behavior of four different experimental setups with computational efficiency, robustness and accuracy. The proposed modeling method uses 8-node hexahedral isoparametric elements for the discretization of concrete. Steel rebars may have any orientation inside the solid concrete elements allowing the simulation of longitudinal as well as transverse reinforcement. Concrete cracking is treated with the smeared crack approach, while steel reinforcement is modeled with the natural beam-column flexibility-based element that takes into consideration shear and bending stiffness. The performance of the proposed modeling is demonstrated by comparing the numerical predictions with existing experimental and numerical results in the literature as well as with those of a commercial code. The results show that the proposed refined simulation predicts accurately the nonlinear inelastic behavior of reinforced concrete structures achieving numerical robustness and computational efficiency.
Keywords
reinforced concrete; smeared crack; embedded reinforcement; natural beam-column element; flexibility element;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Argyris, J., Tenek, L. and Olofsson, L. (1997), "TRIC: a simple but sophisticated 3-node triangular element based on 6 rigid-body and 12 straining modes for fast computational simulations of arbitrary isotropic and laminated composite shells", Comput. Methods Appl. Mech. Eng., 145, 11-85.   DOI   ScienceOn
2 Argyris, J.H., Balmer, H., Doltsinis, J.S., Dunne, P.C., Haase, M., Kleiber, M., Malejannakis, G.A., Mlejnek, H.P., Muller, M. and Scharf, D.W. (1979), "Finite element method - the natural approach", Comput. Methods Appl. Mech. Eng., 17(18), 1-106.
3 Argyris, J.H., Tenek, L. and Mattsson, A. (1998), "BEC: A 2-node fast converging shear-deformable isotropic and composite beam element based on 6 rigid-body and 6 straining modes", Comput. Methods Appl. Mech. Eng., 152, 281-336.   DOI   ScienceOn
4 Armero, F. and Oller, S. (2000), "A general framework for continuum damage models. I. Infinitesimal plastic damage models in stress space", Int. J. Solids Struct., 37(48-50), 7409-7436.   DOI   ScienceOn
5 Balan, T.A., Spacone, E. and Kwon, M. (2001), "A 3D hypoplastic model for cyclic analysis of concrete structures", Eng. Struct., 23(4), 333-342.   DOI   ScienceOn
6 Barzegar, F. and Maddipudi, S. (1994), "Generating reinforcement in FE modeling of concrete structures", J. Struct. Eng., 120, 1656-1662.   DOI   ScienceOn
7 Bathe, K.J. (1995), Finite Element Procedures, Prentice Hall Inc., Upper Saddle River, New Jersey, USA.
8 Bažant, Z.P. and Oh, B.H. (1983), "Crack band theory for fracture of concrete", Mater. Construct., 16(3),155-177.   DOI   ScienceOn
9 Bažant, Z.P. and Zdenek, P. (1983), "Comment on orthotropic models for concrete and Geomaterials", J. Eng. Mech., 109(3), 849-865.   DOI
10 Bertero, V.V., Aktan, A., Charney, F. and Sause, R. (1985), "Earthquake simulator tests and associated experimental analytical and correlation studies of one-fifth scale model", Earthq. Effects on Reinforced Concrete Structures, ACI, SP, Detroit, 375-424.
11 Borja, R.I., Sama, K.M. and Sanz, P.F. (2003), "On the numerical integration of three-invariant elastoplastic constitutive models", Comput. Methods Appl. Mech. Eng., 192, 1227-1258.   DOI   ScienceOn
12 Bresel, B. and Scordelis, A.C. (1963), Shear strength of reinforced concrete beams, ACI J., 60, 51-74.
13 Cedolin, L. and Dei, P.S. (1977), "Finite element studies of shear-critical R/C beams", ASCE, J. Eng. Mech. Div., 103(3), 395-410.
14 Cervenka, J. and Papanikolaou, V.K. (2008), "Three dimensional combined fracture-plastic material model for concrete", Int. J. Plasticity, 24(12), 2192-2220.   DOI   ScienceOn
15 Cervenka, V. (1970), Inelastic finite element analysis of reinforced concrete panels under plane loads, Ph.D., University of Colorado, University Microfilms, Inc., Michigan.
16 Cervenka, V., Jendele, L., Cervenka, J. (2008), ATENA program documentation. Part 1: Theory, Cervenka Consulting, Prague, Czech Republic.
17 Cervera, M., Hinton, E. and Hassan, O. (1987), "Nonlinear Analysis of RC plate and shell structures using 20-noded isoparametric brick elements", Comput. Struct., 25, 845-869.   DOI   ScienceOn
18 Cotsovos,, D.M., Zeris, C.A. and Abas, A.A. (2009), "Finite Element Modeling of Structural Concrete", ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering, COMPDYN 2009, Rhodes, Greece.
19 Ciampi, V. and Nicoletti, M. (1986), "Parameter identification for cyclic constitutive models with stiffness and strength degradation", Procceding of the 8th European Conference on Earthquake Engineering, Lisbon.
20 Clough, R.W., Benuska, K.L. and Wilson, E.L. (1965), "Inelastic earthquake response of tall buildings", Proceeding of the 3th World Conference on Earthquake Engineering, New Zealand, 11, New Zealand.
21 Darwin, D. and Pecknold, D.A. (1976), "Analysis of RC shear panels under cyclic loading", J. Struct. Div., ASCE, 102(2), 355-369.
22 Desmorat, R., Gatuingt, F. and Ragueneau, F. (2007), "Nonlocal anisotropic damage model and related computational aspects for quasi-brittle materials", Eng. Fracture Mech., 74(10), 1539-1560.   DOI   ScienceOn
23 Elwi, A.E. and Hrudey, T.M. (1989), "Finite element model for curved embedded reinforcement", J. Eng. Mech., 115, 740-754.   DOI
24 Fardis, M.N., Alibe, B. and Tasoulas, J.L. (1983), "Monotonic and cyclic constitutive law for concrete", J. Eng. Mech., ASCE, 109, 516-536.   DOI   ScienceOn
25 Girard, C. and Bastien, J. (2002), "Finite element bond slip model for concrete columns under cyclic loads", J. Struct. Eng., ASCE, 128, 1502-1510.   DOI   ScienceOn
26 Gonzalez-Vidosa, F., Kotsovos, M.D. and Pavlovic, M.N. (1988), "On the numerical instability of the smeared-crack approach in the nonlinear modeling of concrete structures", Commun. Appl. Num. Meth. Engng, 4, 799-806.   DOI
27 Jason, L., Huerta, A., Pijaudier-Cabot, G. and Ghavamian, S. (2006), "An elastic plastic damage formulation for concrete: Application to elementary tests and comparison with an isotropic damage model", Comput. Methods Appl. Mech. Eng., 195(52), 7077-7092.   DOI   ScienceOn
28 Gonzalez-Vidosa, F., Kotsovos, M.D. and Pavlovic, M.N. (1991), "A three-dimensional nonlinear finite-element model for structural concrete; Part 1: main features and objectivity study and Part 2: generality study", Proceedings of the Institution of Civil Engineers, Part 2, Research and Theory, 91, 517-544.   DOI
29 Hartl, H. and Handel, C.H. (2002), "3D finite element modeling of reinforced concrete structures", fib 2002, Osaka Congress, Japan.
30 Ile, N. and Reynouard, J.M. (2000), "Nonlinear analysis of reinforced concrete shear wall under earthquake loading", J. Earthq. Eng., 4(2), 183-213.
31 Jendele, L. and Červenka, J. (2009), "On the solution of multi-point constraints - Application to FE analysis of reinforced concrete structures", Comput. Struct., 87, 970-980.   DOI   ScienceOn
32 Jiràsek, M. and Rolshoven, S. (2003), "Comparison of integral-type nonlocal plasticity models for strain-softening materials", Int. J. Eng. Sci., 41, 1553-1602.   DOI   ScienceOn
33 Kolleger, J. and Mehlhorn, G. (1987), "Material model for cracked reinforced concrete", IABSE Colloquium on Computational Mechanics of Concrete Structures-Advances and Applications, Delft, 63-74.
34 Kotsovos, M.D. (1979), "A mathematical description of the strength properties of concrete under generalized stress", Mag. Concrete Res., 31(108), 151-158.   DOI   ScienceOn
35 Kotsovos, M.D. (1983), "Effect of Testing Techniques on the Post-Ultimate Behavior of Concrete in Compression", Mater. Struct., RILEM, 16(91), 3-12.
36 Kwak, H.G. and Kim, D.Y. (2001), "Nonlinear analysis of RC shear walls considering tension-stiffening effect", Comput. Struct., 79, 499-517.   DOI   ScienceOn
37 Kotsovos, M.D. (1984), "Concrete. A brittle fracturing material", RILEM Mater. Struct., 17, 107-115.
38 Kotsovos, M.D. and Pavlovic, M.N. (1995), Structural concrete. Finite Element Analysis for Limit State Design, Thomas Telford, London.
39 Kwak, H.G. and Kim, D.Y. (2001), "Nonlinear analysis of RC shear walls considering tension-stiffening effect", Comput. Struct., 79, 499-517.   DOI   ScienceOn
40 Kwak, H.G. and Kim, D.Y. (2004), "Material nonlinear analysis of RC shear walls subject to cyclic loadings", Eng. Struct., 26, 1423-1436.   DOI   ScienceOn
41 Kwak, H.G. and Kim, D.Y. (2006), "Cracking behavior of RC panels subject to biaxial tensile stresses", Comput. Struct., 84, 305-317.   DOI   ScienceOn
42 Kwan, W.P. and Billington, S.L. (2001), "Simulation of structural concrete under cyclic load", J. Struct. Eng., 127, 1391-1401.   DOI   ScienceOn
43 Lee, J. and Fenves, G.L. (2001), "A return-mapping algorithm for plastic-damage models: 3D and plane stress formulation", Int. J. Numer. Methods Eng., 50(2), 487-506.   DOI   ScienceOn
44 Lefas, I. (1988), Behavior of reinforced concrete walls and its implication for ultimate limit state design, Ph.D., University of London.
45 Lefas, I.D. and Kotsovos, M.D. (1990), "Strength and deformation characteristics of reinforced concrete walls under load reversals", ACI Struct. J., 87(6), 716-726.
46 Lubliner, J., Oliver, J., Oller, S. and Onate, E. (1989), "A plastic-damage model for concrete", Int. J. Solids Struct., 3, 299-326.
47 Markou, G. and Papadrakakis, M. (2012), "An efficient generation method of embedded reinforcement in hexahedral elements for reinforced concrete simulations", Adv. Eng. Soft. ADES, 45(1), 175-187.   DOI   ScienceOn
48 Lykidis, G. (2007), Static and dynamic analysis of reinforced concrete structures with 3D finite elements and the smeared crack approach, Ph.D. Thesis, NTUA, Greece.
49 Markou, G. (2010), ReConAn v1.00. Finite Element Analysis Software Manual, Institute of Structural Analysis and Seismic Research, Technical University of Athens, Greece.
50 Markou, G. (2011), Detailed Three-Dimensional Nonlinear Hybrid Simulation for the Analysis of Large-Scale Reinforced Concrete Structures, Ph.D. Thesis, National Technical University of Athens.
51 Mazars, J., Kotronis, P., Ragueneau, F. and Casaux, G. (2006), "Using multifiber beams to account for shear and torsion. Applications to concrete structural elements", Comput. Mathod Appl. Mech., 195, 7264-7281.   DOI   ScienceOn
52 Mazars, J., Ragueneau, F., Casaux, G., Colombo, A. and Kotronis, P. (2004), "Numerical modeling for earthquake engineering: the case of lightly RC structural walls", Int. J. Numer. Anal. Methods Geom., 28, 857-874.   DOI   ScienceOn
53 Menegotto, M. and Pinto, P.E. (1973), "Method of analysis for cyclically loaded reinforced concrete plane frames Including changes in geometry and non-elastic behavior of elements under combined normal force and bending", Proceedings, IABSE Symposium on Resistance and Ultimate Deformability of Structures Acted on by Well Defined Repeated Loads, Lisbon.
54 Mergos, P.E. and Kappos, A.J. (2008), "A distributed shear and flexural flexibility model with shear-flexure interaction for R/C members subjected to seismic loading", Earthq. Eng. Struct. Dyn., 37 1349-1370.   DOI   ScienceOn
55 Nechnech, W., Meftah, F. and Reynouard, J.M. (2002), "An elasto-plastic damage model for plain concrete subjected to high temperatures", Eng. Struct., 24(5) 597-611.
56 Mirzabozorg, H. and Ghaemian, M. (2005), "Nonlinear behavior of mass concrete in 3d problems using a smeared crack approach", Earthq. Eng. Struct. Dyn., 34, 247-269.   DOI   ScienceOn
57 Mitchell, W.F. (1997), "A Fortran 90 Interface for OpenGL", NISTIR 5985.
58 Navarro, G.J., Miguel, S.P., Fernandez, P.M.A. and Filippou, F.C. (2007), "A 3D numerical model for reinforced and prestressed concrete elements subjected to combined axial, bending, shear and torsion loading", Eng. Struct., 29, 3404-3419.   DOI   ScienceOn
59 Oliver, J., Linero, D.L., Huespe, A.E. and Manzoli, O.L. (2008), "Two-dimensional modeling of material failure in reinforced concrete by means of a continuum strong discontinuity approach", Comput. Methods Appl. Mech. Eng., 197, 332-348.   DOI   ScienceOn
60 Oliver, J. (1989), "Consistent characteristic length for smeared cracking models", Int. J. Numer. Methods Eng., 28(2), 461-474.   DOI   ScienceOn
61 Ozbolt, J. and Li, Y.J. (2001), "Three dimensional cyclic analysis of compressive diagonal shear failure", Finite Element Anal. RC Struct., Eds. (Willam, K., Tanabe, T.), ACI, SP, 205(4) , 61-79.
62 Papachristidis, A., Fragiadakis, M., and Papadrakakis, M. (2009), "A shear-deformable fiber beam-column element for seismic analysis of steel structures", Computational Methods in Structural Dynamics and Earthquake Engineering (COMPDYN), Rhodes.
63 Papachristidis, A., Fragiadakis, M., and Papadrakakis, M. (2010), "A 3D fibre beam-column element with shear modeling for the inelastic analysis of steel structures", Comput. Mech., 45(6), 553-572.   DOI
64 Papanikolopoulos, K. (2003), Investigation of the non-linear behavior of reinforced concrete members with finite elements, Postgraduate Thesis, National Technical University of Athens, Athens.
65 Papaioannou, I., Fragiadakis, M. and Papadrakakis, M. (2005), "Inelastic analysis of framed structures using the fiber approach", Proceeding of the 5th International Congress on Computational Mechanics, GRACM 05, Limassol, Cyprus, 1, 231-238.
66 Papanikolaou, V.K. and Kappos, A.J. (2009), "Numerical study of confinement effectiveness in solid and hollow reinforced concrete bridge piers: Part 1: Methodology", Eng. Struct., 87(21-22), 1427-1439.
67 Papanikolaou, V.K. and Kappos, A.J. (2009), "Numerical study of confinement effectiveness in solid and hollow reinforced concrete bridge piers: Part 2: Analysis results and discussion", Eng. Struct., 87(21-22), 1427-1439.
68 Park, H. and Kim, J.Y. (2005), "Hybrid plasticity model for reinforced concrete in shear", Eng. Struct., 27, 35-48.   DOI   ScienceOn
69 Rashid, Y.M. (1968), "Ultimate strength analysis of prestressed concrete vessels", Nucl. Eng. Des., 7, 334-344.   DOI   ScienceOn
70 Saritas, A. and Filippou, F.C. (2009), "Numerical integration of a class of 3d plastic-damage concrete models and condensation of 3d stress-strain relations for use in beam finite elements", Eng. Stuct., 31(10), 2327-2336.   DOI   ScienceOn
71 Sato, Y. and Naganuma, K. (2007), "Discrete-like crack simulation by smeared crack-based FEM for reinforced concrete", Earthq. Eng. Struct. Dyn., 36, 2137-2152.   DOI   ScienceOn
72 Siemens PLM Software (2009), World-class finite element analysis (FEA) solution for the Windows desktop, Siemens Product Lifecycle Management Software Inc.
73 Simo, J.C. and Ju, J.W. (1987), "Strain-based and stress-based continuum damage models.1. formulation", Int. J. Solids Struct., 23(7), 821-840.   DOI   ScienceOn
74 Taucer, F.F., Spacone, E. and Filippou, F.C. (1991), A Fiber beam-column element for seismic response analysis of reinforced concrete structures, Report No. UCB/EERC-91/17, University of California, Berkeley.
75 Spacone, E., Filippou, F.C. and Taucer, F.F. (1996), "Fibre beam-clumn model for nonlinear analysis of R/C frames Part I: formulation", Earthq. Eng. Struct. Dyn., 25, 711-725.   DOI   ScienceOn
76 Spiliopoulos, K.V. and Lykidis, G. (2006), "An efficient three-dimensional solid finite element dynamic analysis of reinforced concrete structures", Earthq. Eng. Struct. Dyn., 35, 137-157.   DOI   ScienceOn
77 Takizawa, H. (1976), "Notes on some basic problems in inelastic analysis or planar RC structures", Trans. Arch. Inst. Japan, 240, Part I, 51-62, Part II, 65-77.
78 Van, Mier, J.G.M. (1986), "Multiaxial strain-softening of concrete", Mater. Struct., RILEM, 19(111), 179-200.   DOI
79 Van Mier, J.G.M., Shah, S.P., Arnaud, M., Balayssac, J.P., Bassoul, A., Choi, S., Dasenbrock, D., Ferrara, G., French, C., Gobbi, M.E., Karihaloo, B.L., Konig, G., Kotsovos, M.D., Labnz, J., Lange-Kornbak, D., Markeset, G., Pavlovic, M.N., Simsch, G., Thienel, K.C., Turatsinze, A., Ulmer M., van Vliet, M.R.A. and Zissopoulos, D. (1997), "Test methods for the strain-softening of concrete), Strain-softening of concrete in uniaxial compression", Mater. Struct., RILEM, 30(198), 195-209.   DOI   ScienceOn
80 Viwathenatepa, S., Popov, E.P. and Bertero, V.V. (1979), Effects of Generalized Loadings on Bond of Reinforcing Bars Embedded in Confined Concreteblocks, Report to National Science Foundation, University of California Berkeley, California.
81 Zeris, C.A. and Mahin, S. (1988), "Analysis of reinforced concrete beam-columns under uniaxial excitation", J. Struct. Eng., ASCE, 114(4), 804-820.   DOI