미국의 Jeopardy! 퀴즈쇼와 같은 DeepQA 환경에서 인간을 대신해 컴퓨터가 효과적으로 답하기 위해서는, 광범위한 지식 베이스와 빠른 시공간 추론 능력이 요구된다. 본 논문에서는 방향 및 위상 관계 추론을 위한 효율적인 공간 추론 방법 중 하나로, 혼합 공간 추론 알고리즘을 제안한다. 본 알고리즘은 전향 추론과 후향 추론을 결합한 혼합 추론 방식을 취함으로써, 불필요한 추론 계산을 줄여 질의 처리 속도도 향상될 뿐 아니라 공간 지식 베이스의 변화에 효과적인 대처가 가능하도록 설계하였다. 본 연구에서는 이 알고리즘을 기반으로 구현한 혼합 공간 추론기와 샘플 공간 지식베이스를 이용하여 성능 분석 실험들을 수행하였고, 이를 통해 본 논문에서 제안한 혼합 공간 추론 알고리즘의 높은 성능을 확인할 수 있었다.
In this research, hybrid method with case-based reasoning and rule-based reasoning is applied. Using case-based reasoning, design experts'experience and know-how are effectively represented in order to obtain a proper configuration of midship section in the initial ship design stage. Since there is not sufficient domain knowledge available to us, traditional case-adaptation algorithms cannot be applied to our problem, i.e., creating the configuration of midship section. Thus, new case-adaptation algorithms not requiring any domain knowledge are developed antral applied to our problem. Using the knowledge representation of DnV rules, rule-based reasoning can perform deductive inference in order to obtain the scantling of midship section efficiently. The results from the case-based reasoning and the rule-based reasoning are examined by comparing the results with various conventional methods. And the reasonability of our results is verified by comparing the results wish actual values from parent ship.
Journal of Information Technology Applications and Management
/
제12권4호
/
pp.1-12
/
2005
In general, other conventional researches propose the fuzzy Petri net-based fuzzy reasoning algorithms based on the exhaustive search algorithms. If it can allow the certainty factors representing in the fuzzy production rules to use as the heuristic information, then it can allow the reasoning of rule-based systems to perform fuzzy reasoning in more effective manner. This paper presents a fuzzy Petri net(FPN) model to represent the fuzzy production rules of a rule-based system. Based on the fuzzy Petri net model, a weighted fuzzy reasoning algorithm is proposed to Perform the fuzzy reasoning automatically, This algorithm is more effective and more intelligent reasoning than other reasoning methods because it can perform fuzzy reasoning using the certainty factors which are provided by domain experts as heuristic information
RacerPro, Pellet 등 지금까지의 전혈적인 추론 시스템들은 주로 Tableaux Algorithm 기반의 추론 시스템으로 Tableaux Algorithm의 특성상 대용량 ABox 추론에서 문제점을 나타낸다. 이를 해결하기 위한 연구로 Tableaux Algorithm 기반에 DBMS를 함께 사용한 영국 Manchester 대학의 Instance Store와 Disjunctive Datalog Approach를 사용한 독일 Karlsruhe 대학의 KAON2가 있다. 현재 추론 시스템들에 대한 벤치마크 실험은 대부분 Tableaux Algorithm 기반의 TBox 추론 위주이며 ABox 추론에 대한 평가는 거의 진행되지 않았다. 특히 최근 이슈로 부각된 (대용량 ABox 추론을 위한 추론 시스템)의 특성별 벤치마크 실험은 거의 보고되지 않았다. 이에 본 논문에서는 각 추론엔진들의 이론적 배경을 근간으로 전형적 추론엔진들과 최근 이슈에 따른 대용량 ABox론 위한 추론엔진들을 상호 비교를 통해 살펴보며 특히, 대용량 ABox 처리론 위한 추론엔진인 Manchester 대학의 Instance Store와 Karlsruhe 대학의 KAON2를 LUBM을 통하여 분석 평가함으로 사용자의 요구에 따른 대용량 ABox 추론엔진을 제시한다. 평가방법에서는 LUBM(Lehigh University BenchMark)에 대한 소개와 이를 이용한 벤치마크 실험 방법 및 평가 시스템에 대하여 소개한다. 본 논문은 결론을 통해 실험 결과와 각 추론엔진의 사용 Algorithm 특성을 기초로 다양한 환경에서의 대용량 ABox 처리에 적합한 추론엔진을 제시한다.
본 논문에서는 구간값 퍼지집합 추론의 퍼지 Pr/T 네트 표현을 제안한다. 여기에서 퍼지생성규칙은 지식표현을 위해 사용하고, 퍼지생성규칙의 믿음값은 구간값 퍼지집합으로 표현한다. 제안한 구간값 퍼지집합 추론 알고리즘은 퍼지생성규칙의 전제부와 결론부에 있는 퍼지개념에 따라서 적절한 믿음값평가함수를 사용하기 때문에 다른 방법보다 사람이 사용하는 직관과 추론에 더 가깝다.
Previous studies in stock market predictions using artificial intelligence techniques such as artificial neural networks and case-based reasoning, have focused mainly on spot market prediction. Korea launched trading in index futures market (KOSPI 200) on May 3, 1996, then more people became attracted to this market. Thus, this research intends to predict the daily up/down fluctuant direction of the price for KOSPI 200 index futures to meet this recent surge of interest. The forecasting methodologies employed in this research are the integration of genetic algorithm and artificial neural network (GAANN) and the integration of genetic algorithm and case-based reasoning (GACBR). Genetic algorithm was mainly used to select relevant input variables. This study adopts the categorical data preprocessing based on expert's knowledge as well as traditional data preprocessing. The experimental results of each forecasting method with each data preprocessing method are compared and statistically tested. Artificial neural network and case-based reasoning methods with best performance are integrated. Out-of-the Model Integration and In-Model Integration are presented as the integration methodology. The research outcomes are as follows; First, genetic algorithms are useful and effective method to select input variables for Al techniques. Second, the results of the experiment with categorical data preprocessing significantly outperform that with traditional data preprocessing in forecasting up/down fluctuant direction of index futures price. Third, the integration of genetic algorithm and case-based reasoning (GACBR) outperforms the integration of genetic algorithm and artificial neural network (GAANN). Forth, the integration of genetic algorithm, case-based reasoning and artificial neural network (GAANN-GACBR, GACBRNN and GANNCBR) provide worse results than GACBR.
본 논문에서는 규칙기반 전문가시스템의 퍼지 생성규칙을 표현할 수 있는 퍼지페트리네트 표현을 제안한다. 퍼지페트리네트 표현을 기반으로, 전진추론 알고리즘과 후진추론 알고리즘으로 구성된 퍼지 추론 알고리즘을 제안한다. 본 논문이 제안한 알고리즘은 단순히 min과 max 계산만을 하는 기존의 알고리즘과는 달리 퍼지 생성규칙의 전제 부와 결론 부에 퍼지 개념의 유무에 따라 적절한 믿음 값 평가 함수을 사용하여 보다 더 인간적인 추론을 한다. 전진추론 알고리즘은 유한한 방향성 나무인 도달나무로 표현할 수 있다. 후진추론 알고리즘은 목표노드에서 시작노드까지의 후진추론 통로를 구한 후에 믿음 값 평가함수를 이용하여 목표노드의 믿음 값을 구한다.
한국조명전기설비학회 1999년도 학술대회논문집-국제 전기방전 및 플라즈마 심포지엄 Proceedings of 1999 KIIEE Annual Conference-International Symposium of Electrical Discharge and Plasma
/
pp.240-246
/
1999
This parer proposes fuzzy reasoning algorithm for improvement in Zonal Cavity Method that is difficult to calculate average illumination without lighting scope and reflection factor so on. This parer use fuzzy reasoning algorithm for maintainment of the best illumination in spite of some variation those are influenced of room illumination and cut down the difficult to be calculated used Zonal Cavity Method.
일반적으로 퍼지 생성규칙의 확신도와 규칙에 나타나는 퍼지 명제의 확신도는 0과 1사이의 실수로 표현한다. 만일 퍼지 생성규칙의 확신도와 퍼지 명제의 확신도를 구간값 퍼지 집합으로 표현한다면, 규칙기반시스템이 더 유연한 방법으로 퍼지 추론을 하는 것이 가능하게 된다. 본 논문에서는 퍼지 페트리네트와 이 네트에 기반을 둔 규칙 기반시스템을 위한 구간값 퍼지 집합 후진추론 알고리즘을 제안한다. 규칙 기반시스템에 있는 퍼지 생성규칙은 퍼지 페트리네트로 모형화된다. 여기에서 퍼지 생성규칙에 나타나는 퍼지 명제의 확신도와 규칙의 확신도는 구간값 퍼지 집합으로 표현한다. 여기에서 제안한 알고리즘은 목표노드에서 시작노드까지 후진추론 통로를 찾아낸 후 목표노드의 확신도를 계산한다. 구간값 퍼지 집합 후진추론 알고리즘은 규칙 기반 시스템이 더 유연하고 사람들이 하는 것과 같은 퍼지 후진추론을 가능하게 한다.
규칙기반시스템에서 퍼지 생성규칙의 확신도와 규칙에 나타나는 퍼지 술어의 확신도는 0과 1사이의 실수로 표현한다. 만일 퍼지 생성규칙의 확신도와 퍼지 술어의 확신도를 모호집합에 기반을 둔 0과 1사이의 모호숫자와 같은 구간으로 표현한다면, 규칙기반시스템이 더 유연한 방법으로 퍼지추론을 하는 것이 가능하게 된다[18]. 우리는 모호집합 추론을 자동으로 실행하는 효율적인 알고리즘을 제안하였다. 이 모호집합 추론 알고리즘은 규칙기반시스템이 더 유연하고 효율적인 추론을 실행하는 것을 허용한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.