• Title/Summary/Keyword: Reanalysis Method

Search Result 118, Processing Time 0.018 seconds

A Study on the Experience Design Construction and Its Application Model (경험디자인의 구성과 적용 모형에 관한 연구)

  • 윤세균;김태균;채승진
    • Archives of design research
    • /
    • v.16 no.4
    • /
    • pp.289-298
    • /
    • 2003
  • The 21st century could be called the age of Experience Economy associated with the importance to external and internal experience of product users. It needs the understanding of customer's needs in new point of view. In the area of design development, it requires the extensive application of experience from traditional method that was based on the style and usability to more advanced concept. To correspond to these changes, we need to explore new customer's value system for knowledge-information design and systematic approaches to experience system. The purpose of this research is to define the concept of 'experience' newly in the importance side of customer's life, form a clear definition of experience design and present the model of application system. Theoretical frameworks of this research are based on the Empiricism and John Dewey's theory. By applying these frameworks make dear the concept of experience concept and reanalysis the meaning and style in the perspective of design. In this process, we can extract the main factors that inducing the experience, create new application system and model again to the field of design. Application model can creates various experiences through supplying different experience style and factors for customer, make customer realize experience object. Experience designs offer optimal experience to users by making a plan and design experience to user's goal.

  • PDF

Analysis of Current State of High School Achievement Evaluation for Enhancing English Class based on Achievement Assessment (성취평가중심 영어수업 활성화를 위한 고등학교 성취평가 현황 분석 연구)

  • Cho, Sung Jun
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.4
    • /
    • pp.550-566
    • /
    • 2018
  • In the era of the 4th industrial revolution, enhancing achievement evaluation based on process oriented instruction is essential. It assists human growth both cognitively and mentally. The purpose of this study is to analyze current condition of high school achievement evaluation in Daejeon region for enhancing English class based on achievement Assessment. Analyzing high school achievement evaluation plans as well as analyzing items of paper and pencil test using TELL program was conducted. Reanalysis of global citizen theme-based English according to core achievement standard was performed. The questionnaire was analyzed using the SPSS Win 20.0 Program to figure out significant difference of instructional method, the rate of students' grade improvement, English class related to the state of career recognition. T-test, ANOVA was performed to determine if there was a difference between the individual instructional variables. The research result is designed to construct or develop English class based on achievement evaluation while providing each high school with the result of current state of high school achievement evaluation. Specific characteristics of individual achievement result was conducted in terms of analyzing distribution of answer sheet response in order to be used as information for managing each high school achievement evaluation.

Forecasting the Sea Surface Temperature in the Tropical Pacific by Neural Network Model (신경망 모델을 이용한 적도 태평양 표층 수온 예측)

  • Chang You-Soon;Lee Da-Un;Seo Jang-Won;Youn Yong-Hoon
    • Journal of the Korean earth science society
    • /
    • v.26 no.3
    • /
    • pp.268-275
    • /
    • 2005
  • One of the nonlinear statistical modelling, neural network method was applied to predict the Sea Surface Temperature Anomalies (SSTA) in the Nino regions, which represent El Nino indices. The data used as inputs in the training step of neural network model were the first seven empirical orthogonal functions in the tropical Pacific $(120^{\circ}\;E,\;20^{\circ}\;S-20^{\circ}\;N)$ obtained from the NCEP/NCAR reanalysis data. The period of 1951 to 1993 was adopted for the training of neural network model, and the period 1994 to 2003 for the forecasting validation. Forecasting results suggested that neural network models were resonable for SSTA forecasting until 9-month lead time. They also predicted greatly the development and decay of strong E1 Nino occurred in 1997-1998 years. Especially, Nino3 region appeared to be the best forecast region, while the forecast skills rapidly decreased since 9-month lead time. However, in the Nino1+2 region where they are relatively low by the influence of local effects, they did not decrease even after 9-month lead time.

Optimal Micrositing and Annual Energy Production Prediction for Wind Farm Using Long-term Wind Speed Correlation Between AWS and MERRA (AWS와 MERRA 데이터의 장기간 풍속보정을 통한 풍력터빈 최적배치 및 연간에너지생산량 예측)

  • Park, Mi Ho;Kim, Bum Suk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.4
    • /
    • pp.201-212
    • /
    • 2016
  • A Wind resource assessment and optimal micrositing of wind turbines were implemented for the development of an onshore wind farm of 30 MW capacity on Gadeok Island in Busan, Republic of Korea. The wind data measured by the automatic weather system (AWS) that was installed and operated in the candidate area were used, and a reliability investigation was conducted through a data quality check. The AWS data were measured for one year, and were corrected for the long term of 30 years by using the modern era retrospective analysis for research and application (MERRA) reanalysis data and a measure- correlate-predict (MCP) technique; the corrected data were used for the optimal micrositing of the wind turbines. The micrositing of the 3 MW wind turbines was conducted under 25 conditions, then the best-optimized layout was analyzed with a various wake model. When the optimization was complete, the estimated park efficiency and capacity factor were from 97.6 to 98.7 and from 37.9 to 38.3, respectively. Furthermore, the annual energy production (AEP), including wake losses, was estimated to be from 99,598.4 MWh to 100,732.9 MWh, and the area was confirmed as a highly economical location for development of a wind farm.

Integration and Reanalysis of Four RNA-Seq Datasets Including BALF, Nasopharyngeal Swabs, Lung Biopsy, and Mouse Models Reveals Common Immune Features of COVID-19

  • Rudi Alberts;Sze Chun Chan;Qian-Fang Meng;Shan He;Lang Rao;Xindong Liu;Yongliang Zhang
    • IMMUNE NETWORK
    • /
    • v.22 no.3
    • /
    • pp.22.1-22.25
    • /
    • 2022
  • Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndromecoronavirus-2 (SARS-CoV-2), has spread over the world causing a pandemic which is still ongoing since its emergence in late 2019. A great amount of effort has been devoted to understanding the pathogenesis of COVID-19 with the hope of developing better therapeutic strategies. Transcriptome analysis using technologies such as RNA sequencing became a commonly used approach in study of host immune responses to SARS-CoV-2. Although substantial amount of information can be gathered from transcriptome analysis, different analysis tools used in these studies may lead to conclusions that differ dramatically from each other. Here, we re-analyzed four RNA-sequencing datasets of COVID-19 samples including human bronchoalveolar lavage fluid, nasopharyngeal swabs, lung biopsy and hACE2 transgenic mice using the same standardized method. The results showed that common features of COVID-19 include upregulation of chemokines including CCL2, CXCL1, and CXCL10, inflammatory cytokine IL-1β and alarmin S100A8/S100A9, which are associated with dysregulated innate immunity marked by abundant neutrophil and mast cell accumulation. Downregulation of chemokine receptor genes that are associated with impaired adaptive immunity such as lymphopenia is another common feather of COVID-19 observed. In addition, a few interferon-stimulated genes but no type I IFN genes were identified to be enriched in COVID-19 samples compared to their respective control in these datasets. These features are in line with results from single-cell RNA sequencing studies in the field. Therefore, our re-analysis of the RNA-seq datasets revealed common features of dysregulated immune responses to SARS-CoV-2 and shed light to the pathogenesis of COVID-19.

Improvements for Atmospheric Motion Vectors Algorithm Using First Guess by Optical Flow Method (옵티컬 플로우 방법으로 계산된 초기 바람 추정치에 따른 대기운동벡터 알고리즘 개선 연구)

  • Oh, Yurim;Park, Hyungmin;Kim, Jae Hwan;Kim, Somyoung
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_1
    • /
    • pp.763-774
    • /
    • 2020
  • Wind data forecasted from the numerical weather prediction (NWP) model is generally used as the first-guess of the target tracking process to obtain the atmospheric motion vectors(AMVs) because it increases tracking accuracy and reduce computational time. However, there is a contradiction that the NWP model used as the first-guess is used again as the reference in the AMVs verification process. To overcome this problem, model-independent first guesses are required. In this study, we propose the AMVs derivation from Lucas and Kanade optical flow method and then using it as the first guess. To retrieve AMVs, Himawari-8/AHI geostationary satellite level-1B data were used at 00, 06, 12, and 18 UTC from August 19 to September 5, 2015. To evaluate the impact of applying the optical flow method on the AMV derivation, cross-validation has been conducted in three ways as follows. (1) Without the first-guess, (2) NWP (KMA/UM) forecasted wind as the first-guess, and (3) Optical flow method based wind as the first-guess. As the results of verification using ECMWF ERA-Interim reanalysis data, the highest precision (RMSVD: 5.296-5.804 ms-1) was obtained using optical flow based winds as the first-guess. In addition, the computation speed for AMVs derivation was the slowest without the first-guess test, but the other two had similar performance. Thus, applying the optical flow method in the target tracking process of AMVs algorithm, this study showed that the optical flow method is very effective as a first guess for model-independent AMVs derivation.

A Simulation of Agro-Climate Index over the Korean Peninsula Using Dynamical Downscaling with a Numerical Weather Prediction Model (수치예보모형을 이용한 역학적 규모축소 기법을 통한 농업기후지수 모사)

  • Ahn, Joong-Bae;Hur, Ji-Na;Shim, Kyo-Moon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.12 no.1
    • /
    • pp.1-10
    • /
    • 2010
  • A regional climate model (RCM) can be a powerful tool to enhance spatial resolution of climate and weather information (IPCC, 2001). In this study we conducted dynamical downscaling using Weather Research and Forecasting Model (WRF) as a RCM in order to obtain high resolution regional agroclimate indices over the Korean Peninsula. For the purpose of obtaining detailed high resolution agroclimate indices, we first reproduced regional weather for the period of March to June, 2002-2008 with dynamic downscaling method under given lateral boundary conditions from NCEP/NCAR (National Centers for Environmental Prediction/National Center for Atmospheric Research) reanalysis data. Normally, numerical model results have shown biases against observational results due to the uncertainties in the modelis initial conditions, physical parameterizations and our physical understanding on nature. Hence in this study, by employing a statistical method, the systematic bias in the modelis results was estimated and corrected for better reproduction of climate on high resolution. As a result of the correction, the systematic bias of the model was properly corrected and the overall spatial patterns in the simulation were well reproduced, resulting in more fine-resolution climatic structures. Based on these results, the fine-resolution agro-climate indices were estimated and presented. Compared with the indices derived from observation, the simulated indices reproduced the major and detailed spatial distributions. Our research shows a possibility to simulate regional climate on high resolution and agro-climate indices by using a proper downscaling method with a dynamical weather forecast model and a statistical correction method to minimize the model bias.

A Comparative Evaluation of Multiple Meteorological Datasets for the Rice Yield Prediction at the County Level in South Korea (우리나라 시군단위 벼 수확량 예측을 위한 다종 기상자료의 비교평가)

  • Cho, Subin;Youn, Youjeong;Kim, Seoyeon;Jeong, Yemin;Kim, Gunah;Kang, Jonggu;Kim, Kwangjin;Cho, Jaeil;Lee, Yangwon
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.2
    • /
    • pp.337-357
    • /
    • 2021
  • Because the growth of paddy rice is affected by meteorological factors, the selection of appropriate meteorological variables is essential to build a rice yield prediction model. This paper examines the suitability of multiple meteorological datasets for the rice yield modeling in South Korea, 1996-2019, and a hindcast experiment for rice yield using a machine learning method by considering the nonlinear relationships between meteorological variables and the rice yield. In addition to the ASOS in-situ observations, we used CRU-JRA ver. 2.1 and ERA5 reanalysis. From the multiple meteorological datasets, we extracted the four common variables (air temperature, relative humidity, solar radiation, and precipitation) and analyzed the characteristics of each data and the associations with rice yields. CRU-JRA ver. 2.1 showed an overall agreement with the other datasets. While relative humidity had a rare relationship with rice yields, solar radiation showed a somewhat high correlation with rice yields. Using the air temperature, solar radiation, and precipitation of July, August, and September, we built a random forest model for the hindcast experiments of rice yields. The model with CRU-JRA ver. 2.1 showed the best performance with a correlation coefficient of 0.772. The solar radiation in the prediction model had the most significant importance among the variables, which is in accordance with the generic agricultural knowledge. This paper has an implication for selecting from multiple meteorological datasets for rice yield modeling.