• Title/Summary/Keyword: Realizable

Search Result 216, Processing Time 0.024 seconds

Pole assignment for three-dimensional systems using two-dimensional dynamic compensators

  • Kawakami, Atsushi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10b
    • /
    • pp.1135-1138
    • /
    • 1990
  • In this paper, we study the pole assignment problem for three-dimensional systems. We transform the denominator of transfer functions of the closed-loop system into the product of three stable one-dimensional polynomials, by performing two-dimensional dynamical feedback and input transformation on the given three-dimensional systems. In the next, we consider the possibility that these two-dimensional dynamic compensators are realizable, thoroughly, and propose the counter-measure in case that they are not realizable. And, we obtain the conditions so that the closed-loop three-dimensional systems are stable. Moreover, we calculate the dynamical dimension which is necessary for the pole assigntmnt, and suggest the pole assignmnt method with the lowest dynamical dimnsion.

  • PDF

Wind pressures on different roof shapes of a finite height circular cylinder

  • Ozmen, Y.;Aksu, E.
    • Wind and Structures
    • /
    • v.24 no.1
    • /
    • pp.25-41
    • /
    • 2017
  • The effects of finite cylinder free end shape on the mean and fluctuating wind pressures were investigated experimentally and numerically by using three different roof shapes: flat, conical and hemispherical. The pressure distributions on the roofs and the side walls of the finite cylinders partially immersed in a simulated atmospheric boundary layer have been obtained for three different roof shapes. Realizable $k-{\varepsilon}$ turbulence model was used for numerical simulations. Change in roof shapes has caused significant differences on the pressure distributions. When compared the pressure distributions on the different roofs, it is seen from the results that hemispherical roof has the most critical pressure field among the others. It is found a good agreement between numerical and experimental results.

A 3D CFD analysis of flow past a hipped roof with comparison to industrial building standards

  • Khalil, Khalid;Khan, Huzafa;Chahar, Divyansh;Townsend, Jamie F.;Rana, Zeeshan A.
    • Wind and Structures
    • /
    • v.34 no.6
    • /
    • pp.483-497
    • /
    • 2022
  • Three-dimensional (3D) computational fluid dynamics (CFD) analysis of flow around a hipped-roof building representative of UK inland conditions are conducted. Unsteady simulations are performed using three variations of the k-ϵ RANS turbulence model namely, the Standard, Realizable, and RNG models, and their predictive capability is measured against current European building standards. External pressure coefficients and wind loading are found through the BS 6399-2:1997 standard (obsolete) and the current European standards (BS EN 1991-1-4:2005 and A1:20101). The current European standard provides a more conservative wind loading estimate compared to its predecessor and the k-ϵ RNG model falls within 15% of the value predicted by the current standard. Surface shear stream-traces and Q-criterion were used to analyze the flow physics for each model. The RNG model predicts immediate flow separation leading to the creation of vortical structures on the hipped-roof along with a larger separation region. It is observed that the Realizable model predicts the side vortex to be a result of both the horseshoe vortex and the flow deflected off it. These model-specific aerodynamic features present the most disparity between building standards at leeward roof locations. Finally, pedestrian comfort and safety criteria are studied where the k-ϵ Standard model predicts the most ideal pedestrian conditions and the Realizable model yields the most conservative levels.

Evaluation of URANS Turbulence Models through the Prediction of the Flow around a Circular Cylinder (원형 실린더 주위의 유동해석을 통한 URANS 난류 모델 성능 비교)

  • Kim, Minjae;Shin, Jihwan;Kwon, Laeun;Lee, Kurnchul
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.6
    • /
    • pp.861-867
    • /
    • 2014
  • In the present study, the flow around a circular cylinder at $Re=3.6{\time}10^6$ is numerically simulated using URANS approach. The objective of this study is to evaluate the turbulence models(Realizable k-${\varepsilon}$, RNG k-${\varepsilon}$) through the prediction of the unsteady flow characteristics around the cylinder. The time-averaged drag coefficients and vortex shedding phenomenon in the wake region are compared to available experimental data and other numerical results. The simulation with Realizable k-${\varepsilon}$ model is found to be more dissipative due to large eddy viscosity predicted in the wake region while the simulation with RNG k-${\varepsilon}$ model predicts a complex vortex shedding phenomenon with more coherent structures realistically.

Miniaturized Microstrip Dual Band-Stop Filter Using Stepped Impedance Resonators (계단형 임피던스 공진기를 이용한 소형화된 마이크로스트립 이중 대역 저지 필터)

  • Kim, Gi-Rae;Park, Young-Bae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.8
    • /
    • pp.1653-1658
    • /
    • 2011
  • A novel circuit structure of dual-band bandstop filters is proposed in this paper. This structure comprises two shunt-connected tri-section stepped impedance resonators with a transmission line in between. Theoretical analysis from the equivalent circuit and design procedures are described. We represented graphs for filter design from the derived synthesis equations by resonance condition of circuits. Notably, advantages of the proposed filter structure are compact size in design, wide range of realizable resonance frequency ratio, and more realizable impedances.

Variable Dual Band Stop Filter Using 3-Stepped Impedance Resonators (3단 계단형 임피던스 공진기를 이용한 가변 이중 대역 저지 필터)

  • Kim, Gi-Rae;Kim, Yo-Seob
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.4 no.2
    • /
    • pp.119-125
    • /
    • 2011
  • A novel circuit structure of dual-band bandstop filters is proposed in this paper. This structure comprises two shunt-connected tri-section stepped impedance resonators with a transmission line in between. Theoretical analysis from the equivalent circuit and design procedures are described. We represented graphs for filter design from the derived synthesis equations by resonance condition of circuits. Notably, advantages of the proposed filter structure are compact size in design, wide range of realizable resonance frequency ratio, and more realizable impedances.

Multiphase Simulation of a Liquid Jet in a Lab-scale Ramjet Combustor (모형 램젯 연소기에서 액체제트의 다상유동 해석)

  • Oh, Jeong-Seog;Lee, Won-Nam;Lee, Jong-Geun;Santavicca, Dominique A.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.386-392
    • /
    • 2010
  • The multiphase simulation of a liquid jet in a lab-scale ramjet combustor with a plain orifice type injector was studied with a commercial CFD tool, a FLUENT program. The objectives of the current study are to analysis the breakup characteristics of a hexane liquid jet in a cross flow and to derive the correlation between flow conditions and drag force coefficients in a test section. From the result of a numerical simulation, we concluded that a DPM and Realizable $k-{\varepsilon}$ model with an enhanced wall treatment were available to simulate the multiphase flow simulation. And the calculated distribution of a hexane vapor concentration was well-matched with experimental results.

  • PDF

A Numerical Prediction for the Thermo-fluid Dynamic and Missile-motion Performance of Gas-Steam Launch System (수치모사를 통한 가스-스팀 발사체계의 열유동과 탄의 운동성능 예측)

  • Kim, Hyun Muk;Bae, Seong Hun;Bae, Dae Seok;Park, Cheol Hyeon;Jeon, Hyeok Soo;Kim, Jeong Soo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.591-595
    • /
    • 2017
  • Numerical simulations were carried out to analyze thermo-fluid dynamic and missile-motion performance by using two-phase flow model and dynamic grid system. To analyze the interaction among the hot gas, coolant, and mixture flow, Realizable $k-{\varepsilon}$ turbulence and VOF(Volume Of Fluid) model were chosen and a parametric study was performed with the change of coolant flow rate. As a result of the analysis, pressure of the canister showed a large difference depending on the presence or absence of the coolant, and also showed a dependancy on the amount of coolant. Velocity and acceleration were dependent on the canister pressure.

  • PDF

Validation of RANS models and Large Eddy simulation for predicting crossflow induced by mixing vanes in rod bundle

  • Wiltschko, Fabian;Qu, Wenhai;Xiong, Jinbiao
    • Nuclear Engineering and Technology
    • /
    • v.53 no.11
    • /
    • pp.3625-3634
    • /
    • 2021
  • The crossflow is the key phenomenon in turbulent flow inside rod bundles. In order to establish confidence on application of computational fluid dynamics (CFD) to simulate the crossflow in rod bundles, three Reynolds-Averaged Navier Stokes (RANS) models i.e. the realizable k-ε model, the k-ω SST model and the Reynolds stress model (RSM), and the Large Eddy simulations (LES) with the Wall-Adapting Local Eddy-viscosity (WALE) model are validated based on the Particle Image Velocimetry (PIV) flow measurement experiment in a 5 × 5 rod bundle. In order to investigate effects of periodic boundary condition in the gap, the numerical results obtained with four inner subchannels are compared with that obtained with the whole 5 × 5 rod bundle. The results show that periodic boundaries in the gaps produce strong errors far downstream of the spacer grid, and therefore the full 5 × 5 rod bundle should be simulated. Furthermore, it can be concluded, that the realizable k-ε model can only provide reasonable results very close to the spacer grid, while the other investigated models are in good agreement with the experimental data in the whole downstream flow in the rod bundle. The LES approach shows superiority to the RANS models.