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ABSTRACT

In this paper, we study the pole assignment
problem for three-dimensional systems. We trans-—
form the denominator of transfer functions of the
closed-loop system into the product of three sta-
ble one~dimensional polynomials, by performing
two-dimensional dynamical feedback and input
transformation on the given three-~dimensional
systems.

In the next, we consider the possibility that
these two~dimensional dynamic campensators are
realizable, thoroughly, and propose the counter-
measure in case that they are not realizable. And
, we obtain the conditions so that the closed-
loop three-dimensional systems are stable.

Moreover, we calculate the dynamical dimen-
sion which is necessary for the pole assignment,
and suggest the pole assignment method with the
lowest dynamical dimension.

1. INTRODUCTION

In recent years, three-dimensional digital
signal processing attracts attention. Because,
recently, computer has high speed and large memo—
rial capacity, it can act enormous computation
needed in three-dimensional digital signal pro—
cessing. Therefore, interest in the design of
three-dimensional systems rises [11-19].

1In this paper, we propose a method for as-
signing poles of transfer functions of such
three-dimensional systems to arbitrary positions.

Some studies about the assignment problem of
characteristic polynomials of two-dimensional
systems have been reported [10]-[i5]. They are very
valuable, but it is very difficult to extend them
to three-dimensional system.

In the first place, we define poles of three-
dimensional systems. In this paper, the purpose
is, by performing feedback and input transforma-
tion containing two-dimensional dynamic compensa-
tors on the given three-dimensional systems, we
transform the denaminator of transfer functions
of the closed-loop systems into the product of
three stable one~dimensional polynomials.

In this paper, to begin with, from the given
three-dimensional systems, we calculate backward
"first realization system" of three-dimensional
transfer functions. First realization system is
one~dimensional system over the field of two-di-
mensional rational functions. And, we perform
two~dimensional feedback and input transformation
on the first realization system for the desired

pole assigmment. Concretely, we regard these dy-
namic compensators as two-dimensicnal transfer
functions and realize them with a minimal dimen-~
sion in two steps respectively, so that we ob-
tain the feedback system and input transformea-—
tion system. As the dynamic compensators of in-
put transformation is the separable-denominator
form, it can be realized with a minimal dimen-
sion with respect to both of two variables.

In the next, in order that these dynamic
compensators are realizable, they have to be
proper with respect to both of two variables. We
consider this possibility thoroughly, and pro-
pose the counter-measure in case that they are
nonproper. And, we obtain the conditions so that
the closed-loop three-dimensional systems are
stable.

Moreover, we calculate the dynamical dimen—
sion which is necessary for the realization of
these dynamic compensators, and suggest the pole
assigrment method with the lowest dynamical di-
mension.

Pole assignment problem for three-dimension-
al systems can be applied in case that distrib—
uted-parameter system over two-dimensional plane
can be modelled by three-dimensional systems. As
we define poles of three-dimensional systems as
the above-mentioned cones, it is important in the
stabilization or design of dynamical character-
istics.

2. DESCRIPTION OF PROBLEN

We deal with the following three-dimensional
systems of Roesser’s type.
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where x‘a(l,J k) is n,th horizontal state vector
b4 (l,],k) is ngzth vertlcal state vector, ="(i,7],
k) is nsth additional state vector, u(i,j,k) is
input, y(i,j,k) is output and ApA;,---are con-
stant matrices.

If denominator polynomial of transfer func-
tions can be expressed by
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The purpose of this paper is, by performing
the state feedback and input transformatlon con-
taining two-dimensional dynamic carpensators on
(1), we transform the poles of the closed-loop
systems into /A designated arbitrarily in the
unit circle.

We express a(z,,zz,za) in (2) by
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3. A POLE ASSIGNMENT METHOD

We exXpress transfer functions of the system

in (1) by
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(T) Calculation of First Realization Systems

From the system in (1), we calculate backward
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We call the following system ((9) is rewrlt—
ten)
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first realization system of F(z, 1Z2s23) in (6).

(I[) calculation of Two-Dimensional Dynamic
Campensators

In the system in (10), if A(z,,23) b(zz,23))
is controllable over lR"(zz,za) s by performing the
state feedback of x‘ﬁ(l,zz,zs) , whose coefficients
are rational functions of z,,z3, characteristic
polynomial of the closed-loop system can be des-
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ignated to arbitrary one.

It is proved by the pole assigrment theory
in one-dimensional systeams (l4].

We perform
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on (10),
(11) is
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Now, assuming that %(21,23) ,lb(zz,zs)) is
controllable over R" (z,,23) in (10), by perform—
ing (11), we let (12) coincide with @®(z,) in
(5).

E(z;,23) can be obtained by the design formu~
la of the feedback in one-dimensional system [l4],
that is to say,

so that characteristic polynomial of
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In (10), if (A(zz,zs),fb(zz,za)) is not con-
trollable over RR" (21,23) , we perform the state
feedback of »¥lz,,3,23) or ¥¥(z,,z,,k).

(JD Realization of Two-Dimensional Dynamic
Compensators

Concretely, we regard If (z;,2z3) in (11) as
the transfer function row vector and regard one
of z,,z3 as the main variable, and realize it
with respect to the main variable.

Then, we calculate least common multlple of
denominators of each entry of If(z;,24) in (13),
and realize |f(zz,23) with respect to the varia-
ble whose degree is higher.

Now, it is assumed that it is nzth about z4,

th about z3.

Then, assuming that nz)na, we realize If (z,,

) by an observable companion form with respect
to z2 It is a minimal realization with respect
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and realize (16) with a minimal dimension.
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In the next, we realize g(zz,za) .

In case of g(z,,23) in (14), as its denomi-
nator is separable, it can be realized with a
minimal dimension with respect to both of two
variables [I7]-(2].

By realizing g(z,,23) in (14) by the method
in [21], the following canonical form is obtained,
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Combining (1)-(17),(18), the system which
has the desired poles ((3)) is obtained.

From the obtained system, we calculate back-
ward three-dimensional transfer function.
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/f\(zz,zs) in (19) is least common multiple of
denominators of each entry of !f(zz,za) in (11).

fni(lg)/\ in (19) is coefficient polyncmial
of 2B "in Flz,,z3).

Because, in the system in (17),(18),
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n3 in (20) is the dimension of ¥%i,3,k) in
a7n.

4. EXISTENCE OF TWO-DIMENSIONAL DYNAMIC COMPEN-

ing one entry of lfﬂ in (22) a little, it becomes
a proper rational function row vector.

In (1), in case that one or all entries of b,
are 0, that’/s why nonproper rational functions
certainly happen in entries of f(z,,2z4) in (13),
then, we must perform the state feedback of x“’(z,
+J,23) or *¥(z,,z,,k) .

In order that lf(zz,23) in (11) is realizable,
each entry of transfer function matrix in (16)
has to be a proper rational function, too.

If coefficient polynomial of z?f of common
df/ananinator of each entxry of lf(zz,z3) in (11} is
nath, (16) is a proper rational function matrix.

In case that nonproper rational functions
happen in entries of (16), br&y performing (22),
coefficient polynomial of z2 of common dencmina—
tor of each entry of i(z,,z3) in (11) becomes f
th.

In the next, g(zz,za) in (14) is always prop-
er rational function about both of z, and zj.

And, we realize g(zz,za) in (14) by a con-
trollable campanion form with respect to Zy4
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(25) is a proper rational function matrix.

In order that the obtained three-dimensional
system is stable, common denominator polynomial
of each entry of E(zz,;3) in (11) and its coeffi-
cient polynomial of zJ* “have to be stable.

5. DYNAMICAL DIMENSION FOR POLE ASSIGNMENT

SATORS

In order that f(z,,z3),9(25,23) are realiza-
ble, its each entry has to be proper with re-
spect to both of z, and zj.

Practically, nonproper rational functions
happen very rarely, in entries of K (z,,z3) in
(13) .

In case that nonproper rational functions
happen in entries of lf(z,,23) in (13), by per-

forming
U &R = XMLERTVCERD |, @

we let every row and every column of A"“fb,'f.ﬂ

contain at least one nonzero entry.
In that case, from the closed-loop system,

we calculate backward
[JI“(L, &Za)}

X, e o) _[ﬁ(zz,za) D, 29
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Every row and every colum of &A(z,,z3) ih
(23) contain at least one rational function
whose denominator and numerator are the same de-
gree about both z, and zgq.

Then, if b, in (1) contains at least one
nonzero entry, (22,23) in (23) contains at
least one rational function whose denaminator
and numerator are the same degree about both of
z, and zg.

In this case, [(z;,23) in (13) almost be-
comes a proper rational function row vector
about both of z, and zj.

Still more, nonproper rational functions
happen in entries of lf(z,,z3) in (13), by chang-
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McMillan degree of (16) is ,
2hg-min{fz+n npt i} =2n3(nz+1) (29
at the highest.

Therefore, total dimension which is necessary
for the realization of lf(z,,z3) in (11) is
an

/ / ’
n2+2n3(nz+'>
at the highest.

In lf(zz,zs) in (11), we regard z as the main
variable and realize it by an cbservable compan-
ion form with respect to z3 formerly. Then, total
dimension which is necessary for the realization

is
Mat+ 2N, (NG+D) )
at the highest
We subtract (28) from (27)

{nz+zns(ny+ k- {ns+2n;ns+0} =hg--n; |
@9

if njdn3, (28)<0. Then, realizing with respect
;_:o z, formerly, upper bound of total dimension is
ewer.

That is to say, realizing with respect to the
higher variable in least common multiple of de-
nominator polynomial of each entry of ¥(zp,z3)
in (11) formerly, upper bound of realization di-
mension is fewer,

n;_,ns are

AN M, Na$nin,

Therefore, upper bound of total dimension

@0)



which is necessary for the realization of lf(zz,za
) in (11) is
(in case that njynj)
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And, as g(zz,z3) in (14) can be realized
with a minimal dimension with respect to both of
z, and z3, realization dimension is
Mzt I3 3)
That is to say, dynamical dimension which is
necessary for pole assignment is
(in case that n,)ng)

NG+ 212 N, N+ 2Ne) + 1+ s

(in case that nz(n3)

2 2
n[(n3+2 n_| H.z ﬂ;ﬁ‘z H-Z)+ n—2+n-3 . (35)
By substituting the given n;,n;,nz into (34)
or (35), pole assignment method with the lowest
dynamical dimension can be found.

@

6. CONCLUSION

In this paper, we studied a pole assignment
problem for three-dimensional systems by the
feedback and input transformation containing two-
dimensional dynamic compensators.

In the next, we considered the possibility
that these two-dimensional dynamic compensators
are realizable, thoroughly, and proposed the
counter-measure in case that they are not realiz-
able. And, we obtained the conditions so that the
closed-loop three-dimensional systems are stable.

Moreover, we calculated the dynamical dimen-
sion which is necessary for the pole assignment
and suggested the pole assignment method with the
lowest dynamical dimension.
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