• Title/Summary/Keyword: Real-time object recognition

Search Result 280, Processing Time 0.028 seconds

Real-Time Tracking of Human Location and Motion using Cameras in a Ubiquitous Smart Home

  • Shin, Dong-Kyoo;Shin, Dong-Il;Nguyen, Quoc Cuong;Park, Se-Young
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.3 no.1
    • /
    • pp.84-95
    • /
    • 2009
  • The ubiquitous smart home is the home of the future, which exploits context information from both the human and the home environment, providing an automatic home service for the human. Human location and motion are the most important contexts in the ubiquitous smart home. In this paper, we present a real-time human tracker that predicts human location and motion for the ubiquitous smart home. The system uses four network cameras for real-time human tracking. This paper explains the architecture of the real-time human tracker, and proposes an algorithm for predicting human location and motion. To detect human location, three kinds of images are used: $IMAGE_1$ - empty room image, $IMAGE_2$ - image of furniture and home appliances, $IMAGE_3$ - image of $IMAGE_2$ and the human. The real-time human tracker decides which specific furniture or home appliance the human is associated with, via analysis of three images, and predicts human motion using a support vector machine (SVM). The performance experiment of the human's location, which uses three images, lasted an average of 0.037 seconds. The SVM feature of human motion recognition is decided from the pixel number by the array line of the moving object. We evaluated each motion 1,000 times. The average accuracy of all types of motion was 86.5%.

Novel Parallel Approach for SIFT Algorithm Implementation

  • Le, Tran Su;Lee, Jong-Soo
    • Journal of information and communication convergence engineering
    • /
    • v.11 no.4
    • /
    • pp.298-306
    • /
    • 2013
  • The scale invariant feature transform (SIFT) is an effective algorithm used in object recognition, panorama stitching, and image matching. However, due to its complexity, real-time processing is difficult to achieve with current software approaches. The increasing availability of parallel computers makes parallelizing these tasks an attractive approach. This paper proposes a novel parallel approach for SIFT algorithm implementation using a block filtering technique in a Gaussian convolution process on the SIMD Pixel Processor. This implementation fully exposes the available parallelism of the SIFT algorithm process and exploits the processing and input/output capabilities of the processor, which results in a system that can perform real-time image and video compression. We apply this implementation to images and measure the effectiveness of such an approach. Experimental simulation results indicate that the proposed method is capable of real-time applications, and the result of our parallel approach is outstanding in terms of the processing performance.

A Fast SIFT Implementation Based on Integer Gaussian and Reconfigurable Processor

  • Su, Le Tran;Lee, Jong Soo
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.2 no.3
    • /
    • pp.39-52
    • /
    • 2009
  • Scale Invariant Feature Transform (SIFT) is an effective algorithm in object recognition, panorama stitching, and image matching, however, due to its complexity, real time processing is difficult to achieve with software approaches. This paper proposes using a reconfigurable hardware processor with integer half kernel. The integer half kernel Gaussian reduces the Gaussian pyramid complexity in about half [] and the reconfigurable processor carries out a parallel implementation of a full search Fast SIFT algorithm. We use a low memory, fine grain single instruction stream multiple data stream (SIMD) pixel processor that is currently being developed. This implementation fully exposes the available parallelism of the SIFT algorithm process and exploits the processing and I/O capabilities of the processor which results in a system that can perform real time image and video compression. We apply this novel implementation to images and measure the effectiveness. Experimental simulation results indicate that the proposed implementation is capable of real time applications.

  • PDF

A Study on Image Labeling Technique for Deep-Learning-Based Multinational Tanks Detection Model

  • Kim, Taehoon;Lim, Dongkyun
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.14 no.4
    • /
    • pp.58-63
    • /
    • 2022
  • Recently, the improvement of computational processing ability due to the rapid development of computing technology has greatly advanced the field of artificial intelligence, and research to apply it in various domains is active. In particular, in the national defense field, attention is paid to intelligent recognition among machine learning techniques, and efforts are being made to develop object identification and monitoring systems using artificial intelligence. To this end, various image processing technologies and object identification algorithms are applied to create a model that can identify friendly and enemy weapon systems and personnel in real-time. In this paper, we conducted image processing and object identification focused on tanks among various weapon systems. We initially conducted processing the tanks' image using a convolutional neural network, a deep learning technique. The feature map was examined and the important characteristics of the tanks crucial for learning were derived. Then, using YOLOv5 Network, a CNN-based object detection network, a model trained by labeling the entire tank and a model trained by labeling only the turret of the tank were created and the results were compared. The model and labeling technique we proposed in this paper can more accurately identify the type of tank and contribute to the intelligent recognition system to be developed in the future.

Real-time 3D multi-pedestrian detection and tracking using 3D LiDAR point cloud for mobile robot

  • Ki-In Na;Byungjae Park
    • ETRI Journal
    • /
    • v.45 no.5
    • /
    • pp.836-846
    • /
    • 2023
  • Mobile robots are used in modern life; however, object recognition is still insufficient to realize robot navigation in crowded environments. Mobile robots must rapidly and accurately recognize the movements and shapes of pedestrians to navigate safely in pedestrian-rich spaces. This study proposes real-time, accurate, three-dimensional (3D) multi-pedestrian detection and tracking using a 3D light detection and ranging (LiDAR) point cloud in crowded environments. The pedestrian detection quickly segments a sparse 3D point cloud into individual pedestrians using a lightweight convolutional autoencoder and connected-component algorithm. The multi-pedestrian tracking identifies the same pedestrians considering motion and appearance cues in continuing frames. In addition, it estimates pedestrians' dynamic movements with various patterns by adaptively mixing heterogeneous motion models. We evaluate the computational speed and accuracy of each module using the KITTI dataset. We demonstrate that our integrated system, which rapidly and accurately recognizes pedestrian movement and appearance using a sparse 3D LiDAR, is applicable for robot navigation in crowded spaces.

A Study on the Implementation of Real-Time Marine Deposited Waste Detection AI System and Performance Improvement Method by Data Screening and Class Segmentation (데이터 선별 및 클래스 세분화를 적용한 실시간 해양 침적 쓰레기 감지 AI 시스템 구현과 성능 개선 방법 연구)

  • Wang, Tae-su;Oh, Seyeong;Lee, Hyun-seo;Choi, Donggyu;Jang, Jongwook;Kim, Minyoung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.3
    • /
    • pp.571-580
    • /
    • 2022
  • Marine deposited waste is a major cause of problems such as a lot of damage and an increase in the estimated amount of garbage due to abandoned fishing grounds caused by ghost fishing. In this paper, we implement a real-time marine deposited waste detection artificial intelligence system to understand the actual conditions of waste fishing gear usage, distribution, loss, and recovery, and study methods for performance improvement. The system was implemented using the yolov5 model, which is an excellent performance model for real-time object detection, and the 'data screening process' and 'class segmentation' method of learning data were applied as performance improvement methods. In conclusion, the object detection results of datasets that do screen unnecessary data or do not subdivide similar items according to characteristics and uses are better than the object recognition results of unscreened datasets and datasets in which classes are subdivided.

Hardware implementation of CIE1931 color coordinate system transformation for color correction (색상 보정을 위한 CIE1931 색좌표계 변환의 하드웨어 구현)

  • Lee, Seung-min;Park, Sangwook;Kang, Bong-Soon
    • Journal of IKEEE
    • /
    • v.24 no.2
    • /
    • pp.502-506
    • /
    • 2020
  • With the development of autonomous driving technology, the importance of object recognition technology is increasing. Haze removal is required because the hazy weather reduces visibility and detectability in object recognition. However, the image from which the haze has been removed cannot properly reflect the unique color, and a detection error occurs. In this paper, we use CIE1931 color coordinate system to extend or reduce the color area to provide algorithms and hardware that reflect the colors of the real world. In addition, we will implement hardware capable of real-time processing in a 4K environment as the image media develops. This hardware was written in Verilog and implemented on the SoC verification board.

Fast Scene Understanding in Urban Environments for an Autonomous Vehicle equipped with 2D Laser Scanners (무인 자동차의 2차원 레이저 거리 센서를 이용한 도시 환경에서의 빠른 주변 환경 인식 방법)

  • Ahn, Seung-Uk;Choe, Yun-Geun;Chung, Myung-Jin
    • The Journal of Korea Robotics Society
    • /
    • v.7 no.2
    • /
    • pp.92-100
    • /
    • 2012
  • A map of complex environment can be generated using a robot carrying sensors. However, representation of environments directly using the integration of sensor data tells only spatial existence. In order to execute high-level applications, robots need semantic knowledge of the environments. This research investigates the design of a system for recognizing objects in 3D point clouds of urban environments. The proposed system is decomposed into five steps: sequential LIDAR scan, point classification, ground detection and elimination, segmentation, and object classification. This method could classify the various objects in urban environment, such as cars, trees, buildings, posts, etc. The simple methods minimizing time-consuming process are developed to guarantee real-time performance and to perform data classification on-the-fly as data is being acquired. To evaluate performance of the proposed methods, computation time and recognition rate are analyzed. Experimental results demonstrate that the proposed algorithm has efficiency in fast understanding the semantic knowledge of a dynamic urban environment.

Optical implementation of 3D image correlator using integral imaging technique (집적영상 기술을 이용한 3D 영상 상관기의 광학적 구현)

  • Piao, Yongri;Kim, Seok-Tae;Kim, Eun-Soo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.8
    • /
    • pp.1659-1665
    • /
    • 2009
  • In this paper, we propose an implementation method of 3D image correlator using integral imaging technique. In the proposed method, elemental images of the reference and signal 3D objects are recorded by lenslet arrays and then reference and signal output plane images with high resolution are optically reconstructed on the output plane by displaying these elemental images into a display panel. Through cross-correlations between the reconstructed reference and the single plane images, 3D object recognition is performed. The proposed method can provide a precise 3D object recognition by using the high-resolution output plane images compared with the previous methods and implement all-optical structure for real-time 3D object recognition system. To show the feasibility of the proposed method, optical experiments are carried out and the results are presented.

The Necessity of Home Economics Education Teaching Materials in Secondary School (효과적인 중등학교 가정과 교육을 위한 교재연구의 필요성 -피복영역의 지도를 중심으로-)

  • 손원교
    • Journal of Korean Home Economics Education Association
    • /
    • v.1 no.1
    • /
    • pp.63-85
    • /
    • 1989
  • The Change of environment related to human life, science, technology, economics and education level have much effect on home life. Therefore Home Economics Education have to get out of past trite concept that it is only a method to become good housewife and take the role to widen the human life and to grow creative power as a academic part of science. For these, Home Economics should become life education, life education of secondary school has to have relation to lifelong education. To achieve effective result from Home Economics Education, the object, system and methods of Home Economics Education, the object, system and methods of Home Economics Education have to be improved and teaching material has to be studied systematically. As an object of aboves and education planning in clothing is made for deep understanding the study of Home Economics Teaching Material. And to understand the real state, made some questions, had interview with 63-teaching in Kangweon province and show the results. 1) Tab 1~20 are the level of recognition about object, teaching content, time structure of secondary school. The object is recognized as cultural education and basic job education. 2) Tab 21~30 show the real state of textbook and study of it. To take effect from school lecture other teaching material except textbook is required. 3) Tab 31~40 are the result of sewing and handicraft practice. Sewing and handicraft needs much time and almost all time is used in practicing. 4) Tab 42~54 are the planning of textbook study for effective teaching, self-estimation and teaching material making is also considered. All above is collarless blouse’s planning. Base on above result, all objects of clothing life should be teached. For the development of Home Economics Education 1) Understanding and affection of teachers is required. 2) To solve indicated problem, national policy, education plan in school and education finance are fully supported. 3) More studies is required in Home Economics Education.

  • PDF