DOI QR코드

DOI QR Code

Hardware implementation of CIE1931 color coordinate system transformation for color correction

색상 보정을 위한 CIE1931 색좌표계 변환의 하드웨어 구현

  • Received : 2020.06.01
  • Accepted : 2020.06.19
  • Published : 2020.06.30

Abstract

With the development of autonomous driving technology, the importance of object recognition technology is increasing. Haze removal is required because the hazy weather reduces visibility and detectability in object recognition. However, the image from which the haze has been removed cannot properly reflect the unique color, and a detection error occurs. In this paper, we use CIE1931 color coordinate system to extend or reduce the color area to provide algorithms and hardware that reflect the colors of the real world. In addition, we will implement hardware capable of real-time processing in a 4K environment as the image media develops. This hardware was written in Verilog and implemented on the SoC verification board.

자율주행 기술이 발전함에 따라 물체 인식 기술에 대한 중요도가 높아지고 있다. 물체 인식에 있어서 안개가 낀 날씨는 가시성 및 검출 능력을 저하시키기 때문에 안개 제거 연구가 필요하다. 하지만 안개가 제거된 이미지는 고유의 색상을 제대로 반영하지 못해 검출 오류를 발생시킨다. 본 논문에서는 CIE1931 색 좌표계를 사용해 색상 영역을 확장 또는 축소하여 실세계 색상을 반영하는 알고리즘 및 하드웨어를 제안한다. 또한, 영상 매체의 발달에 맞춰 4K 환경에서 실시간 처리가 가능한 하드웨어를 구현한다. 이 하드웨어는 Verilog로 작성되었으며 SoC 보드를 통해 검증하였다.

Keywords

References

  1. H. L, S. W. Seo, "Stable and Precise Multi-Lane Detection Algorithm Using Lidar in Challenging Highway Scenario," The Institute of Electronics and Information Engineers(IEIE), vol.52, no.12, pp.158-164, 2015. DOI: 10.5573/ieie.2015.52.12.158
  2. J. S. Oh, K. I. Lim and J. H. K, "A Research of Obstacle Detection and Path Planning for Lane Change of Autonomous Vehicle in Urban Environment," Institute of Control, Robotics and Systems, vol.21, no.2, pp.115-120, 2015. DOI: 10.5302/J.ICROS.2015.14.9006
  3. D. H. Kim and J. E. Ha, "Multi-Lane Detection using Convolutional Neural Networks and Transfer Learning," Institute of Control, Robotics and Systems, vol.23, no.9, pp.718-724, 2017. DOI: 10.5302/J.ICROS.2017.17.0107
  4. Z. Xu, X. Liu and N. Ji, "Fog Removal from Color Images using Contrast Limited Adaptive Histogram Equalization," 2009 2nd International Congress on Image and Signal Processing, pp.1-5, 2009. DOI: 10.1109/CISP.2009.5301485.
  5. D. Ngo and B. Kang, "Improving Performance of Machine Learning-based Haze Removal Algorithms with Enhanced Training Database," Institute of Korean Electrical and Electronics Engineers(IKEEE), vol.22, no.4, pp.948-952, 2018. DOI: 10.7471/ikeee.2018.22.4.948.
  6. B. Cai, X. Xu, K. Jia, C. Qing and D. Tao, "DehazeNet: An End-to-End System for Single Image Haze Removal," in IEEE Transactions on Image Processing, vol.25, no.11, pp.5187-5198, 2016. DOI: 10.1109/TIP.2016.2598681.
  7. R. W. G. Hunt and M. R. Pointer, Measuring Colour 4th ed.. IS&T Wiley Series on Imaging, 2011.
  8. D. Ngo, "Hardware implementation of low-light stretch algorithm," Master thesis, Dong-A Univ., 2018.
  9. Xilinx, "DS190 - Zynq-7000 SoC Overview," https://www.xilinx.com/support/documentation/data_sheets/ds190-Zynq-7000-Overview.pdf

Cited by

  1. CIE1931 색좌표계 변환의 최적화된 하드웨어 구현을 통한 색상 보정 vol.25, pp.1, 2021, https://doi.org/10.7471/ikeee.2021.25.1.10