• Title/Summary/Keyword: Real-time imaging

Search Result 536, Processing Time 0.027 seconds

A Method for Improving Resolution and Critical Dimension Measurement of an Organic Layer Using Deep Learning Superresolution

  • Kim, Sangyun;Pahk, Heui Jae
    • Current Optics and Photonics
    • /
    • v.2 no.2
    • /
    • pp.153-164
    • /
    • 2018
  • In semiconductor manufacturing, critical dimensions indicate the features of patterns formed by the semiconductor process. The purpose of measuring critical dimensions is to confirm whether patterns are made as intended. The deposition process for an organic light emitting diode (OLED) forms a luminous organic layer on the thin-film transistor electrode. The position of this organic layer greatly affects the luminescent performance of an OLED. Thus, a system for measuring the position of the organic layer from outside of the vacuum chamber in real-time is desired for monitoring the deposition process. Typically, imaging from large stand-off distances results in low spatial resolution because of diffraction blur, and it is difficult to attain an adequate industrial-level measurement. The proposed method offers a new superresolution single-image using a conversion formula between two different optical systems obtained by a deep learning technique. This formula converts an image measured at long distance and with low-resolution optics into one image as if it were measured with high-resolution optics. The performance of this method is evaluated with various samples in terms of spatial resolution and measurement performance.

Evaluation of geological conditions and clogging of tunneling using machine learning

  • Bai, Xue-Dong;Cheng, Wen-Chieh;Ong, Dominic E.L.;Li, Ge
    • Geomechanics and Engineering
    • /
    • v.25 no.1
    • /
    • pp.59-73
    • /
    • 2021
  • There frequently exists inadequacy regarding the number of boreholes installed along tunnel alignment. While geophysical imaging techniques are available for pre-tunnelling geological characterization, they aim to detect specific object (e.g., water body and karst cave). There remains great motivation for the industry to develop a real-time identification technology relating complex geological conditions with the existing tunnelling parameters. This study explores the potential for the use of machine learning-based data driven approaches to identify the change in geology during tunnel excavation. Further, the feasibility for machine learning-based anomaly detection approaches to detect the development of clayey clogging is also assessed. The results of an application of the machine learning-based approaches to Xi'an Metro line 4 are presented in this paper where two tunnels buried in the water-rich sandy soils at depths of 12-14 m are excavated using a 6.288 m diameter EPB shield machine. A reasonable agreement with the measurements verifies their applicability towards widening the application horizon of machine learning-based approaches.

Fast Remote Detection Algorithms for Chemical Gases Using Pre-Detection with a Passive FTIR Spectrometer (수동형 FTIR 분광계에서 초동 탐지 기법을 이용한 고속 원거리 화학 가스 탐지 알고리즘)

  • Yu, Hyeonggeun;Park, Dongjo;Nam, Hyunwoo;Park, Byeonghwang
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.6
    • /
    • pp.744-751
    • /
    • 2018
  • In this paper, we propose a fast detection and identification algorithm of chemical gases with a passive FTIR spectrometer. We use a pre-detection algorithm that can reduce the spatial region effectively for gas detection and the candidates of the target. It is possible to remove background spectra effectively from measured spectra with the least-squares method. The CC(Correlation Coefficients) and the SNR(Signal-to-Noise Ratio) methods are used for the detection of target gases. The proposed pre-detection algorithm allows the total process of chemical gas detection to be performed with lower complexity compared with the conventional algorithms. This paper can help developing real-time chemical detection instruments and various applications of FTIR spectrometers.

Photonics-based Terahertz Wireless Communication (포토닉스 기반 테라헤르츠 무선통신 기술 동향)

  • Kim, H.S.;Lee, E.S.;Park, D.W.;Lee, I.M.;Moon, K.;Choi, D.H.;Shin, J.H.;Kim, M.G.;Choi, K.S.;Park, K.H.
    • Electronics and Telecommunications Trends
    • /
    • v.34 no.3
    • /
    • pp.75-85
    • /
    • 2019
  • The bandwidth of wireless communication is expected to grow exponentially due to the expansion of mobile devices and the increase of real-time and realistic multimedia services. Recently, the studies on terahertz band wireless communication have been actively conducted for the next generation communication after 5G wireless communication. The terahertz band, which is the unallocated frequency band, has been applied to the non-contact, non-destructive quality inspection industry such as the terahertz imaging and spectral systems through the development of terahertz generating and detecting components. This article briefly describes recent research trends on terahertz wireless communication technologies and introduces the details of photonics-based terahertz devices and systems that have been focused on the Terahertz Basic Research Section of Electronics and Telecommunication Research Institute.

Updates on the treatment of adhesive capsulitis with hydraulic distension

  • Jang Hyuk, Cho
    • Journal of Yeungnam Medical Science
    • /
    • v.38 no.1
    • /
    • pp.19-26
    • /
    • 2021
  • Adhesive capsulitis of the shoulder joint is a common disease characterized by pain at the insertional area of the deltoid muscle and decreased range of motion. The pathophysiological process involves fibrous inflammation of the capsule and intraarticular adhesion of synovial folds leading to capsular thickening and contracture. Regarding the multidirectional limitation of motion, a limitation in external rotation is especially prominent, which is related to not only global fibrosis but also to a localized tightness of the anterior capsule. Ultrasound and magnetic resonance imaging studies can be applied to rule out other structural lesions in the diagnosis of adhesive capsulitis. Hydraulic distension of the shoulder joint capsule provides pain relief and an immediate improvement in range of motion by directly expanding the capsule along with the infusion of steroids. However, the optimal technique for hydraulic distension is still a matter of controversy, with regards to the infusion volume and rupture of the capsule. By monitoring the real-time pressure-volume profile during hydraulic distension, the largest possible fluid volume can be infused without rupturing the capsule. The improvement in clinical outcomes is shown to be greater in capsule-preserved hydraulic distension than in capsule-ruptured distension. Moreover, repeated distension is possible, which provides additional clinical improvement. Capsule-preserved hydraulic distension with maximal volume is suggested to be an efficacious treatment option for persistent adhesive capsulitis.

The Study of Selecting a Test Area for Validating the Proposal Specification of InSAS(Interferometric Synthetic Aperture Sonar) (간섭계측 합성개구소나 성능 평가를 위한 해상 시험장 선정에 관한 연구)

  • Park, Yosup;Kim, Seong Hyeon;Koh, Jieun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.25 no.4
    • /
    • pp.329-338
    • /
    • 2022
  • This paper provides a case study of development testing and evaluation of design goal of Interferometric SAS (Synthetic Aperture Sonar) system that is developing supported by Civil-Military Technology Cooperation Center in offshore fields. For Deep water operating capabilities evaluation, We have surveyed candidate field, bathymetric mapping and target identification over 200 m depth, East Sea. In testing phase, We have provided environmental information of testing field include water column, seabed and weather condition in real time. And to compare excellency of developing InSAS, we have gather commercial imaging sonar system data with same target. This case study will support the Test Readiness Review of future underwater surveillance system developing via investigate marine testing field environment, testing facilities and planning.

Lymphovenous anastomoses with three-dimensional digital hybrid visualization: improving ergonomics for supermicrosurgery in lymphedema

  • Will, Patrick A.;Hirche, Christoph;Berner, Juan Enrique;Kneser, Ulrich;Gazyakan, Emre
    • Archives of Plastic Surgery
    • /
    • v.48 no.4
    • /
    • pp.427-432
    • /
    • 2021
  • The conventional approach of looking down a microscope to perform microsurgical procedures is associated with occupational injuries, anti-ergonomic postures, and increased tremor and fatigue, all of which predispose microsurgeons to early retirement. Recently, three-dimensional (3D) visualization of real-time microscope magnification has been developed as an alternative. Despite its commercial availability, no supermicrosurgical procedures have been reported using this technology to date. Lymphovenous anastomoses (LVAs) often require suturing vessels with diameters of 0.2-0.8 mm, thus representing the ultimate microsurgical challenge. After performing the first documented LVA procedure using 3D-augmented visualization in our unit and gaining experience with this technique, we conducted an anonymized in-house survey among microsurgeons who had used this approach. The participants considered that 3D visualization for supermicrosurgery was equivalent in terms of handling, optical detail, depth resolution, and safety to conventional binocular magnification. This survey revealed that team communication, resident education, and ergonomics were superior using 3D digital hybrid visualization. Postoperative muscle fatigue, tremor, and pain were also reduced. The major drawbacks of the 3D visualization microscopic systems are the associated costs, required space, and difficulty of visualizing the lymphatic contrast used.

Development and evaluation of a compact gamma camera for radiation monitoring

  • Dong-Hee Han;Seung-Jae Lee;Hak-Jae Lee;Jang-Oh Kim;Kyung-Hwan Jung;Da-Eun Kwon;Cheol-Ha Baek
    • Nuclear Engineering and Technology
    • /
    • v.55 no.8
    • /
    • pp.2873-2878
    • /
    • 2023
  • The purpose of this study is to perform radiation monitoring by acquiring gamma images and real-time optical images for 99mTc vial source using charge couple device (CCD) cameras equipped with the proposed compact gamma camera. The compact gamma camera measures 86×65×78.5 mm3 and weighs 934 g. It is equipped with a metal 3D printed diverging collimator manufactured in a 45 field of view (FOV) to detect the location of the source. The circuit's system uses system-on-chip (SoC) and field-programmable-gate-array (FPGA) to establish a good connection between hardware and software. In detection modules, the photodetector (multi-pixel photon counters) is tiled at 8×8 to expand the activation area and improve sensitivity. The gadolinium aluminium gallium garnet (GAGG) measuring 0.5×0.5×3.5 mm3 was arranged in 38×38 arrays. Intrinsic and extrinsic performance tests such as energy spectrum, uniformity, and system sensitivity for other radioisotopes, and sensitivity evaluation at edges within FOV were conducted. The compact gamma camera can be mounted on unmanned equipment such as drones and robots that require miniaturization and light weight, so a wide range of applications in various fields are possible.

3D Facial Scanners: How to Make the Right Choice for Orthodontists

  • Young-Soo Seo;Do-Gil Kim;Gye-Hyeong Lee;Kyungmin Clara Lee
    • Journal of Korean Dental Science
    • /
    • v.17 no.1
    • /
    • pp.1-13
    • /
    • 2024
  • With the advances of digital scanning technology in dentistry, the interests in facial scanning in orthodontics have increased. There are many different manufacturers of facial scanners marketing to the dental practice. How do you know which one will work best for you? What questions should you be asking? We suggest a clinical guideline which may help you make an informed decision when choosing facial scanners. The characteristics of 7 facial scanners were discussed in this article. Here are some considerations for choosing a facial scanner. *Accuracy: For facial scanners to be of real value, having an appropriate camera resolution is necessary to achieve more accurate facial image representation. For orthodontic application, the scanner must create an accurate representation of an entire face. *Ease of Use: Scanner-related issues that impact their ease of use include type of light; scan type; scan time; file type generated by the scanner; unit size and foot print; and acceptance of scans by third-party providers. *Cost: Most of the expenses associated with facial scanning involve the fixed cost of purchase and maintenance. Other expenses include technical support, warranty costs, transmission fees, and supply costs. This article suggests a clinical guideline to make the right choice for facial scanner in orthodontics.

Short-range sensing for fruit tree water stress detection and monitoring in orchards: a review

  • Sumaiya Islam;Md Nasim Reza;Shahriar Ahmed;Md Shaha Nur Kabir;Sun-Ok Chung;Heetae Kim
    • Korean Journal of Agricultural Science
    • /
    • v.50 no.4
    • /
    • pp.883-902
    • /
    • 2023
  • Water is critical to the health and productivity of fruit trees. Efficient monitoring of water stress is essential for optimizing irrigation practices and ensuring sustainable fruit production. Short-range sensing can be reliable, rapid, inexpensive, and used for applications based on well-developed and validated algorithms. This paper reviews the recent advancement in fruit tree water stress detection via short-range sensing, which can be used for irrigation scheduling in orchards. Thermal imagery, near-infrared, and shortwave infrared methods are widely used for crop water stress detection. This review also presents research demonstrating the efficacy of short-range sensing in detecting water stress indicators in different fruit tree species. These indicators include changes in leaf temperature, stomatal conductance, chlorophyll content, and canopy reflectance. Short-range sensing enables precision irrigation strategies by utilizing real-time data to customize water applications for individual fruit trees or specific orchard areas. This approach leads to benefits, such as water conservation, optimized resource utilization, and improved fruit quality and yield. Short-range sensing shows great promise for potentially changing water stress monitoring in fruit trees. It could become a useful tool for effective fruit tree water stress management through continued research and development.