Browse > Article
http://dx.doi.org/10.12989/gae.2021.25.1.059

Evaluation of geological conditions and clogging of tunneling using machine learning  

Bai, Xue-Dong (School of Civil Engineering, Xi'an University of Architecture and Technology)
Cheng, Wen-Chieh (School of Civil Engineering, Xi'an University of Architecture and Technology)
Ong, Dominic E.L. (School of Engineering and Built Environment, Griffith University)
Li, Ge (School of Civil Engineering, Xi'an University of Architecture and Technology)
Publication Information
Geomechanics and Engineering / v.25, no.1, 2021 , pp. 59-73 More about this Journal
Abstract
There frequently exists inadequacy regarding the number of boreholes installed along tunnel alignment. While geophysical imaging techniques are available for pre-tunnelling geological characterization, they aim to detect specific object (e.g., water body and karst cave). There remains great motivation for the industry to develop a real-time identification technology relating complex geological conditions with the existing tunnelling parameters. This study explores the potential for the use of machine learning-based data driven approaches to identify the change in geology during tunnel excavation. Further, the feasibility for machine learning-based anomaly detection approaches to detect the development of clayey clogging is also assessed. The results of an application of the machine learning-based approaches to Xi'an Metro line 4 are presented in this paper where two tunnels buried in the water-rich sandy soils at depths of 12-14 m are excavated using a 6.288 m diameter EPB shield machine. A reasonable agreement with the measurements verifies their applicability towards widening the application horizon of machine learning-based approaches.
Keywords
Xi'an Metro; EPB shield; machine learning; clogging; silt soil;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Liu, B., Liu, Z., Nie, L., Su, M., Sun, H., Fan, K., Zhang, X. and Pang, Y. (2017b), "Comprehensive surface geophysical investigation of karst caves ahead of the tunnel face: A case study in the Xiaoheyan section of the water supply project from Songhua River, Jilin, China", J. Appl. Geophys., 144, 37-49. https://doi.org/10.1016/j.jappgeo.2017.06.013.   DOI
2 Rezaei, A.H., Shirzehhagh, M. and Golpasand, M.R.B. (2019), "EPB tunneling in cohesionless soils: A study on Tabriz Metro settlements", Geomech. Eng., 19(2), 153-165. https://doi.org/10.12989/gae.2019.19.2.153.   DOI
3 Thewes, M. and Hollmann, F.S. (2016), "Assessment of clay soils and clay-rich rock for clogging of TBMs", Tunn. Undergr. Sp. Tech., 57, 122-128. https://doi.org/10.1016/j.tust.2016.01.010.   DOI
4 Liu, J.K., Luan, H.J., Zhang, Y.C., Sakaguchi, O. and Jiang, Y.J. (2020), "Prediction of unconfined compressive strength ahead of tunnel face using measurement-while-drilling data based on hybrid genetic algorithm", Geomech. Eng., 22(1), 81-95. https://doi.org/10.12989/gae.2020.22.1.081.   DOI
5 Luat, N.V., Lee, K. and Thai, D.K. (2020a), "An evolutionary hybrid optimization of MARS model in predicting settlement of shallow foundations on sandy soils", Geomech. Eng., 21(6), 583-598. https://doi.org/10.12989/gae.2020.21.6.583.   DOI
6 Luat, N.V., Nguyen, V.Q. and Lee, S. (2020b), "Application of artificial neural networks in settlement prediction of shallow foundations on sandy soils", Geomech. Eng., 20(5), 385-397. https://doi.org/10.12989/gae.2020.20.5.385.   DOI
7 Mazek, S.A. (2014), "Evaluation of surface displacement equation due to tunnelling in cohesionless soil", Geomech. Eng., 7(1), 55-73. https://doi.org/10.12989/gae.2014.7.1.055.   DOI
8 O'Dwyer, K.G., McCabe, B.A. and Sheil, B.B. (2019), "Interpretation of pipe-jacking and lubrication records for drives in silty soil", Undergr. Sp., 5(3), 199-209. https://doi.org/10.1016/j.undsp.2019.04.001.   DOI
9 Park, T.W., Kim, H.G., Tanvirn, M.T., lee, J.B. and Moon, S.J. (2018), "Influence of coarse particles on the physical properties and quick undrained shear strength of fine-grained soils", Geomech. Eng., 14(1), 99-105. https://doi.org/10.12989/gae.2018.14.1.099.   DOI
10 Persons, W.M. (1919), Indices of Business Conditions: An Index of General Business Conditions, Harvard University Press.
11 Spagnoli, G., Feinendegen, M., Stanjek, H. and Azzam, R. (2011a), "Soil conditioning for clays in EPBMs", Tunn. Tunn. Int., 43(10), 56-61.
12 Scholkopf, B., Platt, J.C., Shawe-Taylor, J., Smola, A.J. and Williamson, R.C. (2001), "Estimating the support of a highd-imensional distribution", Neural Comput., 13(7), 1443-1471. https://doi.org/10.1162/089976601750264965.   DOI
13 Sheil, B.B., Curran, B.G. and McCabe, B.A. (2016), "Experiences of utility microtunnelling in Irish limestone, mudstone and sandstone rock", Tunn. Undergr. Sp. Tech., 51, 326-337. https://doi.org/10.1016/j.tust.2015.10.019.   DOI
14 Sheil, B.B., Suryasentana, S.K. and Cheng, W.C. (2020), "Assessment of anomaly detection methods applied to microtunneling", J. Geotech. Geoenviron. Eng., 146(9). https://doi.org/10.1061/(ASCE)GT.1943-5606.0002326.   DOI
15 Spagnoli, G., Klitzsch, N., Fernandez-Steeger, T., Feinendegen, M., Rey, A.R., Stanjek, H. and Azzam, R. (2011b), "Application of electro-osmosis to reduce the adhesion of clay during mechanical tunnel driving", Environ. Eng. Geosci., 17(4), 417-426. https://doi.org/10.2113/gseegeosci.17.4.417.   DOI
16 Thewes, M. (1999), "Adhesion of clay soil in tunnel drives with slurry shields (In German: Adhasion von Tonboden beim Tunnelvortrieb mit Flussigkeitsschilden)", Berichte aus Bodenmechanik und Grundbau der Bergischen Universitat Wuppertal, Fachbereich Bauingenieurwesen, Bd. 21. Shaker Verlag, Aachen, Germany.
17 Thewes, M. and Hollmann, F.S. (2014), "TBM-specific testing scheme to assess the clogging tendency of rock", Geomech. Tunn., 7(5), 520-527. https://doi.org/10.1002/geot.201400048.   DOI
18 Zhang, W.G. and Goh, A.T.C. (2016), "Evaluating seismic liquefaction potential using multivariate adaptive regression splines and logistic regression", Geomech. Eng., 10(3), 269-284. https://doi.org/10.12989/gae.2016.10.3.269.   DOI
19 Wang, Z.F., Cheng, W.C. and Wang, Y.Q. (2018), "Investigation into geohazards during urbanization process of Xi'an, China", Nat. Hazards, 92(3), 1937-1953. https://doi.org/10.1007/s11069-018-3280-5.   DOI
20 Xu, J.C., Ren, Q.W. and Shen, Z.H. (2017), "Sensitivity analysis of the influencing factors of slope stability based on LS-SVM", Geomech. Eng., 13(3), 447-458. https://doi.org/10.12989/gae.2017.13.4.447.   DOI
21 Zhang, W.G., Zhang, R.H. and Goh, A.T.C. (2018), "MARS inverse analysis of soil and wall properties for braced excavations in clays", Geomech. Eng., 16(6), 577-588. https://doi.org/10.12989/gae.2018.16.6.577.   DOI
22 Basmenj, A.K., Ghafoori, M., Cheshomi, A. and Azandariani, Y.K. (2016), "Adhesion of clay to metal surface; Normal and tangential measurementy", Geomech. Eng., 10(2), 125-135. https://doi.org/10.12989/gae.2016.10.2.125.   DOI
23 Breiman, L. (2001), "Random forests", Mach. Learn., 45(1), 5-32.   DOI
24 Cheng, W.C., Ni, J.C., Huang, H.W. and Shen, J.S. (2019b), "The use of tunnelling parameters and spoil characteristics to assess soil types: A case study from alluvial deposits at a pipejacking project site", B. Eng. Geol. Environ., 78(4), 2933-2942. https://doi.org/10.1007/s10064-018-1288-4.   DOI
25 Cheng, W.C., Ni, J.C., Arulrajah, A. and Huang, H.W. (2018), "A simple approach for characterising tunnel bore conditions based upon pipe-jacking data", Tunn. Undergr. Sp. Tech., 71, 494-504. https://doi.org/10.1016/j.tust.2017.10.002.   DOI
26 Cheng, W.C., Ni, J.C., Shen, S.L. and Huang, H.W. (2017), "Investigation into factors affecting jacking force: A case study", P. I. Civ. Eng. Geotec., 170(4), 322-334. https://doi.org/10.1680/jgeen.16.00117.   DOI
27 Cheng, W.C., Wang, L., Xue, Z.F., Ni, J.C., Rahman M. and Arulrajah, A. (2019a), "Lubrication performance of pipejacking in alluvial deposits", Tunn. Undergr. Sp. Tech., 91, 102991. https://doi.org/10.1016/j.tust.2019.102991.   DOI
28 Cheng, W.C., Bai, X.D., Sheil, B.B., Li, G. and Wang, F. (2020a), "Identifying characteristics of pipejacking parameters to assess geological conditions using optimisation algorithm-based support vector machines", Tunn. Undergr. Sp. Tech., 106, 103592. https://doi.org/10.1016/j.tust.2020.103592.   DOI
29 Eskandari, F., Goharrizi, K.G. and Hooti, R. (2018), "The impact of EPB pressure on surface settlement and face displacement in intersection of triple tunnels at Mashhad metro", Geomech. Eng., 15(2), 769-774. https://doi.org/10.12989/gae.2018.15.2.769.   DOI
30 Cleveland, R.B., Cleveland, W.S., McRae, J.E. and Terpenning, I.J. (1990), "STL: A seasonal-trend decomposition procedure based on loess", J. Off. Stat., 6(1), 3-33.
31 Feinendegen, M., Ziegler, M., Weh, M. and Spagnoli, G. (2011), "Clogging during EPB-tunnelling: Occurrence, classification and new manipulation methods", Proceedings of the ITA-AITES World Tunnel Congress, Helsinki, Finland, January.
32 Fountaine, E.R. (1954), "Investigations into the mechanism of soil adhesion", Eur. J. Soil Sci., 5(2), 251-263. https://doi.org/10.1111/j.1365-2389.1954.tb02191.x.   DOI
33 Friedman, J.H. (1991), "Multivariate adaptive regression splines", Ann. Stat., 19, 1-67.   DOI
34 Gao, W. and He, T.Y. (2017), "Displacement prediction in geotechnical engineering based on evolutionary neural network", Geomech. Eng., 13(5), 845-860. https://doi.org/10.12989/gae.2017.13.5.845.   DOI
35 Goh, A.T.C. and Hefney, A.M. (2010), "Reliability assessment of EPB tunnel-related settlement", Geomech. Eng., 2(1), 57-69. https://doi.org/10.12989/gae.2010.2.1.057.   DOI
36 Lee, C.J., Jeon, Y.J. Kim, S.H. and Park, I.J. (2016), "The influence of tunnelling on the behaviour of pre-existing piled foundations in weathered soil", Geomech. Eng., 11(4), 553-570. https://doi.org/10.12989/gae.2016.11.4.553.   DOI
37 Cheng, W.C., Li, G., Ong, D.E.L., Chen, S.L. and Ni, J.C. (2020b), "Modelling liner forces response to very close-proximity tunnelling in soft alluvial deposits", Tunn. Undergr. Sp. Tech., 103, 103455. https://doi.org/10.1016/j.tust.2020.103455.   DOI
38 Cheng, W.C., Li, G., Liu, N., Xu, J. and Horpibulsuk, S. (2020c), "Recent massive incidents for subway construction in soft alluvial deposits of Taiwan: A review", Tunn. Undergr. Sp. Tech., 96, 103178. https://doi.org/10.1016/j.tust.2019.103178.   DOI
39 Hollmann, F.S. and Thewes, M. (2013), "Assessment method for clay clogging and disintegration of fines in mechanised tunnelling", Tunn. Undergr. Sp. Tech., 37, 96-106. https://doi.org/10.1016/j.tust.2013.03.010.   DOI
40 Javadi, A.A. and Rezania, M. (2009), "Applications of artificial intelligence and data mining techniques in soil modeling", Geomech. Eng., 1(1), 53-74. https://doi.org/10.12989/gae.2009.1.1.053.   DOI
41 Li, S., Liu, B., Nie, L., Liu, Z., Tian, M., Wang, S., Su, M. and Guo, Q. (2015), "Detecting and monitoring of water inrush in tunnels and coal mines using direct current resistivity method: A review", J. Rock Mech. Geotech. Eng., 7(4), 469-478. https://doi.org/10.1016/j.jrmge.2015.06.004.   DOI
42 Li, S., Nie, L. and Liu, B. (2018b), "The practice of forward prospecting of adverse geology applied to hard rock TBM tunnel construction: The case of the Songhua River water conveyance project in the middle of Jilin Province", Engineering, 4(1), 131-137. https://doi.org/10.1016/j.eng.2017.12.010.   DOI
43 Li, S., Xu, S., Nie, L., Liu, B., Liu, R., Zhang, Q., Zhao, Y., Liu, Q., Wang, H., Liu, H. and Guo, Q. (2018a), "Assessment of electrical resistivity imaging for pre-tunneling geological characterization - a case study of the Qingdao R3 metro line tunnel", J. Appl. Geophys., 153, 38-46. https://doi.org/10.1016/j.jappgeo.2018.03.024.   DOI
44 Liu, B., Liu, Z., Li, S., Fan, K., Nie, L. and Zhang, X. (2017a), "An improved time-lapse resistivity tomography to monitor and estimate the impact on the groundwater system induced by tunnel excavation", Tunn. Undergr. Sp. Tech., 66, 107-120. https://doi.org/10.1016/j.tust.2017.04.008.   DOI