
Current Optics and Photonics 

Vol. 2, No. 2, April 2018, pp. 153-164

- 153 -

I. INTRODUCTION

Next generation displays manufactured with an organic 

light emitting diode (OLED) have been on the horizon for 

some time. An OLED utilizes the electroluminescence of 

organic films. The electroluminescence generates light thru 

recombination of electrons and holes injected by the electric 

field. Because an OLED has a self-luminescent property, it 

can be made without a back light unit and can have a 

simple structure, a low power consumption, and a high 

color gamut.

The structure of an OLED, as shown in Fig. 1, consists 

of glass substrate, thin-film transistor (TFT), organic layer, 

cathode and anode. When voltage is applied to the OLED, 

electrons move to the cathode, and holes moves to the 

anode. At this time, the TFT serves as a switch that controls 

the flow of electrons that determines the emission from the 

organic film. Electrons and holes combine at the organic 

film to form excitons. The energy state of excitons is 

lowered to the ground state and emits light. Figure 1 shows 

a case of when a red organic film emits light. The color of 

the light changes according to the property of the organic 

film, and the brightness of the light is determined by the 

amount of current.

The deposition process forms a luminous organic layer on 

the TFT in a vacuum chamber. This process is standardized 

by a fine metal mask method for mass production [1]. As 

shown in Fig. 2(a), the organic source at the solid state is 

vaporized by the voltage drive. (In general, the organic 

matter is colorless in the gas state. However, in Fig. 2(a), 

it is shown in a red color for clarity). A fine metal mask, 

a thin metal film with numerous holes, is used as a cast 
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to shape the organic layer. This is placed in front of the 

glass substrate to ensure that the vaporized organic material 

is accurately deposited on the TFT electrode. If a mis-

alignment of the fine metal mask occurs due to vibration, 

motion error, or deformation in the mask, the organic layers 

will be mispositioned. Moreover, the amount of contact 

between the TFT electrode and the organic layer is reduced. 

Additionally, the amount of current flowing to the organic 

layer is decreased and the brightness of the color drops. 

As shown in Fig. 2(b), organic layers for red are deposited 

at a particular position and emit light normally. However, 

for green and blue, the amount of current decreases and 

the emitting performance of these materials deteriorates. Of 

particular concern, the mixture of color causes the sharpness 

of the colors to drop. Therefore, the positioning of the 

organic layer has a critical effect on luminance efficiency. 

It is an important factor that determines the performance 

of the OLED.

Measurement can also evaluate the quality level of the 

deposition process. Figure 3(a) shows the definition of pixel 

position accuracy (PPA), which is the distance between the 

center of an organic layer and that of the TFT. By 

measuring PPA, it is possible to evaluate deposition 

accuracy and to control the deposition process. A smaller 

PPA value indicates higher accuracy and higher stability in 

the deposition process.

The most difficult challenge for accurate PPA measure-

ment is the degradation of image resolution due to a long 

working distance (WD). Working distance means the space 

between an object and the optical system. In order to 

eliminate impurities as much as possible in the vacuum 

chamber, the optical system has to be located outside of 

the vacuum chamber and images are taken through a 

viewport. This means that the WD has to be at between 

180~190 mm, as show in Fig. 3(b). 

In Eqs. (1) and (2), having a large WD means that the 

spatial resolution loss is caused by the diffraction light. At 

the same time, measurement accuracy is poor.

FIG. 1. The structure of OLED is made of glass substrate, TFT circuit, TFT electrode, anode and cathode. The OLED makes the light 

using electroluminescence by electric field.

(a) (b)

FIG. 2. Organic layers are made on TFT electrodes using a fine metal mask during the deposition process (a). Organic layers of red 

are formed in position, these emit the light normally. In the case of green and blue, because these are situated at the wrong position, 

both sharpness of color and luminance efficiency go down.
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  sin  (1)

where   is the objective angular aperture,  is the refractive 

index of the medium between the objective and the specimen.

 



 (2)

  is the airy radius, and  is the wavelength of 

the illuminating light.

A number of techniques to improve resolution have 

been proposed. Most methods in the industrial field are 

primarily reconstruction-based superresolution approaches. 

In these methods, a high-resolution (HR) image is made 

from multiple low-resolution (LR) images. LR images serve 

as the subpixel data of the reconstructed HR image. To 

obtain LR images, additional structures are needed, such as 

dozens of camera arrays [2-4], various illumination angles 

[5-7], shifting of the actuator for camera aperture [8] or the 

camera sensor [9]. The approach also requires acquisition 

time for the multiple images, which are sensitive to external 

noise and limit real-time application.

Recently, deep learning methods have gained considerable 

attention for single image superresolution [10-13], resto-

ration [14, 15], deconvolution [16], and denoising [17, 18]. 

Deep learning for rich details in an image is based on a 

set of prior examples with LR images and corresponding 

HR images [19]. This method, called example-based super-

resolution, uses model mapping from LR to HR images 

that are trained in advance in order to obtain a high-quality 

image. In 2014, C. Dong et al. introduced a deep learning 

technique into superresolution for the first time, using 

convolution neural networks composed of three layers [10]. 

Fast superresolution convolutional neural networks (FSR-

CNN) [11] use the deconvolution layer instead of bicubic 

interpolation, aiming for faster and better performance. 

Very deep superresolution (VDSR) [12] includes 20 layers 

and uses residual learning, finding that deep networks 

improved image quality. There have been attempts to work 

toward both efficiency and robustness by compressing image 

data [13, 14] and producing a simpler model architecture 

[15]. Because the deep learning method is based on single 

image, it does not need multiple images, eliminating the 

concerns regarding capture time and additional structure.

This paper proposes a new superresolution method that 

utilizes the relationship between two different optics 

expressed by the neural network. This method trains the 

neural networks for a conversion formula, which is used to 

convert the LR image measured at the long distance and 

low-resolution optics into a HR image as if the measure-

ments were done with high-resolution optics. For the first 

time, this novel single-image superresolution method uses 

a deep learning technique for resolution enhancement and 

industrial-level measurement.

II. EXPERIMENTAL SETUP

Figure 4(a) shows the measuring optics configuration. This 

system consisted of a 10 × objective lens for magnifying 

the sample, an ultraviolet (UV) laser diode at a 405 nm 

wavelength to obtain images of the organic layers, a white 

light emitting diode (LED) to capture TFT image, a CCD 

camera with a sensor size of 5.5 by 5.5 square microns, and 

a UV cut filter to block UV light reflected by the sample. 

Optics specifications were: 195 mm WD, 0.12 numerical 

aperture (NA), and 0.55-µm per pixel of spatial resolution. 

Compared to a conventional optical microscope, the optics 

had two distinct characteristics. First, it had a dramatically 

long WD, and thus, can be located outside of a vacuum 

chamber. However, the resolution was too low to achieve 

appropriate accuracy. As a comparison, a 10 × CFI Plan 

Nikon objective lens was frequently used for industrial 

measurements, with specification of 16.0 mm WD and 0.3 

(a) (b)

FIG. 3. Definition of pixel position accuracy (PPA) is deviation between center of organic layer and the one of TFT (a). The optics 

for PPA measurement have to be located outside of the chamber and have the long working distance (WD) (b).
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of NA. 

Another unique feature of this optics setup was the 

inclusion of two different illumination sources. The first 

source was a white LED to illuminate the image for TFT. 

Figure 4(a) shows a real image of hexagonal TFT electrodes 

and TFT circuits illuminated by the white light. (Note: as 

the anode was made of indium tin oxide, which was a 

transparent electrode, it can’t be seen in the image). The 

image shows that electric circuits and electrodes existed on 

the glass substrate to flow current to each of the TFT 

electrodes. Because the organic layers were transparent, it 

was impossible to see organic layers using white light. 

Figure 4(b) shows the second light source which was a 

UV laser diode. This source was not used for curing, but 

as an energy source in order to generate photo-luminescence 

light for the organic layer. Electrons orbiting the nucleus 

at a ground-state energy level absorbed energy from the UV 

photons and revolved at an excited state. However, these 

were very unstable, and the emitted photo-luminescence 

photons occurred in a very short amount of time. The 

position of the transparent organic film can be confirmed 

by acquiring the emitted photo-luminescence light with the 

camera. The shape of the organic layer made by the 

deposition process had blurrier edges than the TFT made 

by photolithography (Images of Figs. 4(a) and 4(b) were 

obtained by a color camera for research purposes).

Because the laser diode for the UV had a long coherence 

length, it can provide energy to the organic layer over a 

long distance. UV light with a wavelength of 405 nm was 

bluish and can be mixed with the emission of the organic 

film. Therefore, as shown in Fig. 4(b), the UV light reflected 

from the sample should be blocked from entering the 

camera using the UV cut filter.

The training optical system in Fig. 5 was manufactured 

to capture HR images used as ground truth images when 

training the network. This optics was composed of a 20 × 

objective lens of the CFI Plan from Nikon, a 405 nm UV 

LED, and a piezoelectric transducer (PZT). The WD of this 

system was 8.7 mm and the NA  was 0.46.

The measurement optics used a laser diode with a long 

coherent length to supply the energy to the organic film at 

a distance. Because the working distance of the training 

optics was shorter than for the measurement optics, this 

system used LEDs with short coherent lengths but with 

more stable power compared to the laser diode. The PZT 

moved the objective lens along the z direction to obtain 

(a) (b)

FIG. 4. The measuring optics had very long working distance (WD) in order to capture the image outside of the vacuum chamber. The 

image of TFT can be obtained by white light illumination (a). Organic layers that were transparent can be measured by UV light using 

photo-luminescence. The UV light was used for an energy source, not for curing. Because UV light was bluish, the reflected light from 

the sample should be prevented from entering the camera using the UV cut filter.
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the best focus and a clear image. It had an accuracy of 0.1 

nm and scanned at 15 µm to acquire an image at 0.075 

µm intervals and found the optimal focus position. Other 

configuration and measurement principles were the same 

as for the measurement optics.

III. METHOD

Figure 6(a) shows a flow chart of the overall measure-

ment procedure. The procedure was comprised of two 

steps: a training process and a measurement process. The 

training process provided the conversion formula between 

the measurement optics and the training optics using a 

deep learning technique. The objects used for the training 

data sets were measured in each optical system. The image 

obtained from the measurement optics was set as the LR 

image and the one taken by the training optics was set as 

the HR image. Because the sample was measured by 

changing the optical system, the position of the sample in 

the LR and HR images must inevitably vary. With a scale- 

invariant-feature transform [20], both images were corrected 

for the translational and rotational deviations from each 

other. This process was repeated for various samples to 

obtain the LR-HR training sets. It was possible to obtain the 

conversion formula by training the deep learning network 

with these data sets.

The measurement process calculated the PPA value with 

a superresolution image and edge detection. First, the image 

of a test sample was captured thru the measurement optics 

and was converted to a superresolution image using the 

conversion formula obtained by the training process. The 

next step was to calculate the center of the TFT and organic 

layers with edge detection. Edge detection senses the 

intensity change of pixels and separates the object from the 

background by finding a boundary line. Finally, the PPA 

values can be calculated by these center coordinates.

3.1. Training Process 

We denote our data set S, which was used to train the 

network

      … (3)

where 

  
    …  (4)

FIG. 5. The configuration of training optics with short 

working distance (WD) and high numerical aperture (NA). 

This optics used UV LED for stable power and piezoelectric 

transducer for capturing a clearer image.

FIG. 6. Flow chart of PPA measurement with training and measurement process. The training process was making conversion formula 

between two different optics using LR-HR set of training samples. The measure process calculated the PPA value. The image of test 

sample was converted to superresolution image using conversion formula. Next step was to calculate the center of TFT and organic 

layers with edge detection and the PPA value can be calculated.
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  
    …  (5)

 denotes the low-resolution images captured thru the 

measurement optics and  denotes the high-resolution 

images, which correspond to the object image measured in 

the training optics.  is the number of training samples. 

Our goal is to learn a model  precisely to predict the 

values of output .

  (6)

where  is its estimate of output  (We drop the  

subscript for brevity). 

Our model , as shown in Fig. 7, was comprised of a 

multiple layer structure and can be expressed as the 

composition of layer function .

  ∘∘⋯∘  (7)

where

 max∗  (8)

 represents the order of layer,   is the total number of 

layers, and  is the input data. The operator ∘ denotes the 

function of the composition, the operator ∗ denotes a 

convolution, and max⋅  corresponds to a ReLU.  

and  are a 3-by-3 convolution filter parameter and bias 

term for the  layer, respectively. These network para-

meters were trained in order to minimize the loss function 

using a stochastic gradient descent with the standard back- 

propagation. The loss function was  distance expressed as

 




 




 




 (9)

Rivenson et al. [21] implemented a convolution neural 

network for statistical transformation between a low-reso-

lution and a high-resolution microscopic image, enhancing 

its spatial resolution, a large field of view and depth of 

field. Our proposed method applied the same concept in 

order to improve measurement accuracy and the spatial 

resolution degraded by diffraction blur. Our papers have a 

very similar methodology. However, there are two differences 

in the deep neural network architecture. The first is depth 

of layers. Rivenson et al. [21] composed a network of 10 

layers (5 blocks × 2 convolution layers), which was a 

relatively shallow network in the field of deep learning 

superresolution. For example, most networks that competed 

in the New Trends in Image Restoration and Enhancement 

workshop and challenge on image superresolution (NTIRE) 

2017 [19] had more than 20 layers, and the 1st prize 

network of this contest consisted of 36 layers). We assume 

that the reason behind employing a smaller shallow layer 

might have been to settle convergence for various biological 

samples, while accepting a small loss in performance. In 

comparison, our samples were OLEDs and these had repeated 

patterns. Additionally, the shape deviations among samples 

tended to be small. Therefore, we can construct our network 

to be deeper, 20 layers, achieving stable convergence and 

high superresolution performance at the same time. The 

second difference was convergence speed. The number of 

epochs till convergence by Rivenson et al. was 460 (lung 

tissue sample) or 630 (breast tissue sample). Our method 

was only 150 epochs and this resulted from a simple loss 

function. Rivenson et al. exploited the combination of Mean 

Square Error and the L2 norm of the image gradient and 

focused on the stability of the convergence. We employed 

a very simple L1 loss function and high value for the 

learning rate in order to speed up the training process. 

This enabled convergence of the training process such that 

it was stable by virtue of similar structures in the samples, 

repetitive patterns in the image, and a carefully initialization 

of kernels and bias terms.

Various previous deep learning superresolution techniques 

[10-15], including VDSR, basically used one image to 

create an LR-HR set. The original image was reduced and 

enlarged as a scale factor. Because the compressed image 

underwent a bicubic interpolation process, the resolution of 

the image was degraded, and it became the LR image. The 

original image was then used as the HR image in order to 

FIG. 7. Our goal is to learn a model F and this is expressed as composition of layer function f. This model is based on a deep 

convolution neural network. This network was made of 20 layers. Each layer has a convolution layer composed of 3-by-3 convolution 

filters and a ReLu layer. The number of filters are 64. The last layer is a residual image, subtracted result between input and output 

image. Most values of residual image are likely to be zero or small.
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train a network (Fig. 8(a)). Generally, a high-quality image 

dataset such as ImageNet, BSD300, BSD500, Set5, Set14, 

and DIV2K had been exploited. The quality of trained net-

work output cannot surpass the one of raw images. In this 

paper, however, all images of a single specimen acquired 

from two optical systems were then used as LR-HR image 

sets (Fig. 8(b)). Configuring an image set in this way 

provided several benefits, including a higher resolution, 

which exceeds that of the original image. Therefore, the 

superior performance came from a new way of preparing 

training data sets, not a neural network architecture. For 

example, the NA of training optics was approximately four 

times that of the measurement optics, and its magnification 

from the objective lens was twice that of the measurement 

optics. Theoretically, if the learning was done perfectly, 

the image of the measurement optics can be converted into 

a super-resolved image whose resolution would be four 

times better and the size doubled. This was a surprising 

result, given that resolution usually went down as image 

size increased. In contrast, the super-resolved image of a 

conventional method might have a resolution that was less 

than that of the original image.

The network, as shown in Fig. 7, was based on a VDSR 

structure [12] and was composed of 20 layers. Each layer 

had 64 convolutional neurons with a 3-by-3 convolution 

filter. The last layer was a residual image, which was the 

subtracted result between an input and output image. Most 

values of the residual image were likely to be zero or 

small. The proposed network was trained by a stochastic 

gradient descent. Weight decay parameters and momentum 

were set to 0.0001 and 0.9, respectively. The learning rate 

was set from 0.005 to 0.0001, and it was reduced gradually 

at each epoch. The number of epochs was 150, and the 

patch was a 32 × 32 grid of the image. The network was 

implemented using the MatConvNet toolbox (beta.24) in a 

MATLAB 2014a environment.

The purpose of this paper was to obtain a high-resolution 

image by developing a conversion equation between optical 

systems using a deep learning network. We noted that the 

goal of our study was not to find a network structure with 

the best performance in a given dataset, as was the goal of 

many papers on deep learning.

3.2. Measurement Process

The measurement process in Fig. 8 calculated the PPA 

value with superresolution images and edge detection. 

First, the image of a measurement object is captured thru 

a measurement optical system (Fig. 9(a)). This image was 

converted to a superresolution image using the pre-learned 

network in a training process (Fig. 9(b)). Next, calculate 

the center of the TFT and organic layer with edge detection. 

The edge detection senses the intensity change in pixels 

and separates the object from the background by finding 

a boundary line. The edge detection image shows the 

boundary for the TFT and the organic layer (Fig. 9(c)). The 

orange cross mark and blue cross mark show the center 

coordinates of the TFT and of the organic film, respectively 

(Fig. 9(d)). The distance between center coordinates indicates 

the PPA value. Therefore, the accuracy of the edge detection 

is directly related to the PPA value. If one pixel in the 

edge detection is miscalculated, the error is accumulated by 

0.275 µm, which is the size per pixel. Figure 9(e) illustrates 

the area within the yellow circle in Fig. 9(c). One small 

rectangle corresponds to one pixel of the image. The white, 

gray, black rectangles are the intensity of the organic layer, 

intermediate, and background, respectively. Blue rectangles 

mean a pixel-level edge and the red line corresponds to a 

subpixel level edge. To obtain a higher level of accuracy, 

it is necessary to have edge detection at a sub-pixel level.

A pixel level of accuracy, and finding the pixels of an 

image corresponding to an edge, can be obtained by the 

Sobel, Canny, Laplacian of Gaussian (LoG) operator. After 

edge detection with pixel-level accuracy is complete, the 

intensity around pixels corresponding to an edge are assumed 

as a continuous function. Then, a sub-pixel level of accuracy 

can be accomplished by finding the greatest intensity value 

change in one pixel again. This paper exploited pixel-level 

edge detection thru LoG operator, which was expressed as

∇ 
    

 







 



 (10)

where     represents a two-dimensional Gaussian 

function.

(a)

(b)

FIG. 8. Conventional deep learning makes LR-HR set with 

one image (a), this paper composes LR-HR set with two 

images obtained from each optical systems (b).
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Here, in order to shorten the computation time, the one- 

dimensional convolution operation in the row direction and 

the column direction were successively performed to replace 

the two-dimensional convolution operation. So,

∇ 
      

 
 (11)

where 

  
 










 (12)

  









 (13)

 represents scale factor.

The continuous function of intensity around an edge in 

subpixel edge detection was assumed as the facet model. 

Using the notation of [22, 23], let the discrete integer index 

 and   be an index satisfying the condition, ∈, ∈ . 

The facet model was expressed as


   










 (14)

where  is the polynomial coefficient. If we assume 


   was a continuous function, it can be expressed as 


  

 



   (15)

where

 








 






  

 (16)

   represents a Chebyshev discrete orthogonal 

polynomial set, and    represents a data value be 

observed. The image intensity 
   can be obtained 

using the facet model technique. The zero-crossing 

operator is applied to the reconstructed image intensity 


   e, so that the edge points can finally be detected.

IV. RESULTS

4.1. Resolution Enhancement Analysis

The proposed method was validated with peak signal-to- 

noise ratio (PSNR), structural similarity index (SSIM) com-

pared to conventional deep learning networks [10, 12, 14], 

multiple image based interpolation [9], and unsharp mask 

[24]. The deep learning network created a superresolution 

image using a measurement optics image as an LR image. 

The multiple image based interpolation produced 9 images 

when moving the sample with micrometer as a one-third 

distance of pixel resolution along the X, Y direction. Each 

of the images was reconstructed in order to create a 

superresolution image. The unsharp mask method was used 

Organic Layer Background

Pixel Level Edge Subpixel Level Edge

Intermediate 

Pixel Size = 0.275 ㎛

(a) (b)

(c) (d) (e)

FIG. 9. The measure process calculated PPA value with superresolution image and edge detection. The image of test sample (a), 

superresolution image with the trained neural network (b), edge detection image (c), the center coordinate of TFT and organic layer 

(d) and difference between pixel level and subpixel level edge detection (e) show the process of measure process.
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as an image sharpening method to enhance local contrast 

based on edge detection.

To prepare LR-HR sets for training, various samples were 

used, such as those for an OLED mobile phone and OLED 

TV. Various patterns in these samples were illuminated 

with UV light to obtain organic film images, and a white 

light LED was used to obtain TFT images. In the training 

process, both TFT and organic layer images were used 

together. There were 150 training sets. In contrast, test images 

were made by measuring sample 1~6 with the measurement 

optics. There were 40 test images.

Figures 10 and 11 show the proposed method compared 

to other top performing methods. HR images of the training 

optics were used as the ground truth. In Fig. 10, only our 

method reconstructs TFT lines in the middle and at the 

corners. Similarly, in Fig. 11, the boundary lines of the 

TFT circuits are clean and vivid in our method, whereas 

these lines are severely blurred or distorted in the other 

methods. Table 1 provides a summary of the quantitative 

evaluation results for the test samples. The proposed method 

outperforms all previous methods in these samples.

Ground Truth

(PSNR / SSIM)

Bicubic

(25.761 dB/ 0.742)

Unsharp [24]

(26.144 dB/ 0.761)

Multiple [9]

(25.680 dB/ 0.739)

SRCNN [10] 

(26.013 dB/ 0.755)

FSRCNN [11]

(25.891 dB/ 0.753)

VDSR [12]

(25.915 dB/ 0.751)

Proposed

(30.586 dB/ 0.896)

FIG. 10. Qualitative comparison of proposed method with other works on ×2 superresolution about Sample 1. Proposed method 

recovers the sharp edge line of TFT.

Ground Truth

(PSNR / SSIM)

Bicubic

(28.667 dB/ 0.901)

Unsharp [24]

(28.744 dB/ 0.900)

Multiple [9]

(29.231 dB/ 0.901)

SRCNN [10]

(29.162 dB/ 0.902)

FSRCNN [11]

(28.761 dB/ 0.900)

VDSR [12]

(28.535 dB/ 0.900)

Proposed

(32.131 dB/ 0.953)

FIG. 11. Qualitative comparison of proposed method with other works on ×2 superresolution about Sample 4. Proposed method shows 

boundary lines of TFT circuits are clearly visible.
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4.2. Modulation Transfer Function Analysis

We conducted modulation transfer function (MTF) analysis 

in order to quantify the effect of our neural network on 

the spatial frequencies of the output image. We applied the 

trained neural networks on a resolution target (USAF 

Resolving Power Test Target 1951), which was imaged 

using the measurement optics. The theoretical Abbe limit 

of measurement optics was 2.29 µm (436.36 line pair/mm), 

assuming an illumination wavelength of 550 nm. MTF was 

evaluated by calculating the contrast for different elements 

of the resolution target [21]. We calculated the contrast 

value with element’s local maximum value 
max

, and 

minimum value 
min

 in Eq. (17). 

 

max
 

min


max
 

min
 (17)

The maximum value and minimum value can be obtained 

from the intensity profile of average cross-section of the 

resolution target element. We set the contrast to 0 in case 

there is no difference between the maximum value and the 

minimum value, assuming that the MTF was not preserved. 

Based on this experimental analysis, MTFs for the input 

image and the output image of the deep neural network 

are compared to each other. As shown in Fig. 12, the 

output image of network shows an increase in modulation 

contrast for a significant portion of the spatial frequency 

spectrum at high frequencies.

TABLE 1. Average PSNR(dB)/SSIM for scale factor ×2 on datasets for Sample 1~6

Test sample Bicubic Unsharp Multiple SRCNN FSRCNN VDSR Proposed

Sample 1 27.273/0.742 27.236/0.741 27.509/0.742 27.494/0.741 27.282/0.740 27.043/0.741 32.483/0.779

Sample 2 30.105/0.910 29.805/0.910 30.557/0.912 30.142/0.916 29.917/0.913 29.661/0.913 31.904/0.941

Sample 3 27.730/0.907 27.038/0.902 28.481/0.910 27.684/0.910 27.190/0.907 26.928/0.909 28.884/0.938

Sample 4 26.985/0.843 26.497/0.844 27.684/0.846 26.951/0.847 26.575/0.843 26.207/0.844 29.116/0.900

Sample 5 26.205/0.882 29.968/0.877 30.496/0.889 30.433/0.901 29.960/0.897 29.658/0.896 32.299/0.929

Sample 6 27.730/0.907 27.038/0.902 28.481/0.910 27.684/0.910 27.190/0.907 26.928/0.909 28.884/0.938

(a) (b) (c)
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FIG. 12. Modulation transfer function (MTF) comparison for the input image and the output image of trained deep neural network. 

The US Air Force (USAF) resolution target illuminated with a numerical aperture of 0.12, leading to theoretical Abbe limit of 2.29 

µm. Input image acquired with a measurement optics (a), zoom in on the red highlighted region (b), output image of the deep neural 

network (c), MTF calculated from the input and output images of the deep neural network (d).
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4.3. Measurement Accuracy Analysis

Measurement accuracy represents the difference of PPA 

values between data to be measured and true value. A 

high measurement accuracy means having the small error 

between two values. If the resolution is high, it is possible 

to extract the correct edge, resulting in accuracy of a high 

order. Table 2 shows the measurement accuracy of various 

samples. These values are the average of deviation between 

PPA values obtained by each method and those of the HR 

image. The proposed method has the smallest errors on these 

samples. Because the present pixel resolution is 0.275 µm, 

it can be said that the accuracy of the proposed method is 

1/4~1/30 pixel level. Also, the relationship between image 

enhancement and measurement performance can also be 

verified. As the values of PSNR and SSIM increase, the 

measurement accuracy tends to be higher, but does not 

exactly coincide. This is because PSNR and SSIM are 

evaluated for the improvement of overall images, but the 

measurement accuracy is affected only by how much the 

edge has higher resolution. Further studies are underway to 

improve the resolution of the edge area preferentially. This 

also has the effect of compressing data, which can also 

save time on network training.

V. CONCLUSION

This paper presented a novel method that demonstrates 

the enhancement of both spatial resolution in long distance 

imaging and measurement-level of an organic layer for an 

in-line deposition process by utilizing a deep learning 

technique. Existing industry superresolution techniques have 

reconstructed an HR image with multiple LR images acquired 

by a camera array, various illumination angles, and by the 

shifting of aperture and sensor. However, the proposed 

method obtained an HR image with only one LR image 

through the trained neural network. This network was able 

to convert an image measured in the LR optical system into 

an image as if it were measured in a HR optical system. 

This method enables real-time measurement that is suitable 

for an in-line process. The experimental results show that 

the proposed method had the best performance of PSNR, 

SSIM and measurement accuracy compared to conventional 

single image superresolution methods on various samples. 
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