DOI QR코드

DOI QR Code

Fast Remote Detection Algorithms for Chemical Gases Using Pre-Detection with a Passive FTIR Spectrometer

수동형 FTIR 분광계에서 초동 탐지 기법을 이용한 고속 원거리 화학 가스 탐지 알고리즘

  • Yu, Hyeonggeun (School of Electrical Engineering, Korea Advanced Institute of Science and Technology) ;
  • Park, Dongjo (School of Electrical Engineering, Korea Advanced Institute of Science and Technology) ;
  • Nam, Hyunwoo (The 4th Research and Development Institute, Agency for Defense Development) ;
  • Park, Byeonghwang (The 4th Research and Development Institute, Agency for Defense Development)
  • 유형근 (한국과학기술원 전기및전자공학부) ;
  • 박동조 (한국과학기술원 전기및전자공학부) ;
  • 남현우 (국방과학연구소 제4기술연구본부) ;
  • 박병황 (국방과학연구소 제4기술연구본부)
  • Received : 2018.05.04
  • Accepted : 2018.10.05
  • Published : 2018.12.05

Abstract

In this paper, we propose a fast detection and identification algorithm of chemical gases with a passive FTIR spectrometer. We use a pre-detection algorithm that can reduce the spatial region effectively for gas detection and the candidates of the target. It is possible to remove background spectra effectively from measured spectra with the least-squares method. The CC(Correlation Coefficients) and the SNR(Signal-to-Noise Ratio) methods are used for the detection of target gases. The proposed pre-detection algorithm allows the total process of chemical gas detection to be performed with lower complexity compared with the conventional algorithms. This paper can help developing real-time chemical detection instruments and various applications of FTIR spectrometers.

Keywords

GSGGBW_2018_v21n6_744_f0001.png 이미지

Fig. 1. Three-layer model

GSGGBW_2018_v21n6_744_f0002.png 이미지

Fig. 2. Flow chart of detection algorithm

GSGGBW_2018_v21n6_744_f0003.png 이미지

Fig. 3. Result of a fitting process at pre-detection

GSGGBW_2018_v21n6_744_f0004.png 이미지

Fig. 4. Result of the pre-detection(left), a region of interesting areas(right)

GSGGBW_2018_v21n6_744_f0005.png 이미지

Fig. 5. Result of a background fitting process atprecise-detection

GSGGBW_2018_v21n6_744_f0006.png 이미지

Fig. 6. HI 90 - FTIR remote sensing system

GSGGBW_2018_v21n6_744_f0007.png 이미지

Fig. 7. Detection result for various target gases: sulfur hexafluoride, ammonia, methanol from the top

Table 1. Comparisons of detection time whether predetection is implemented or not

GSGGBW_2018_v21n6_744_t0001.png 이미지

References

  1. D. Manolakis, S. E. Golowich and R. S. DiPietro, “Long-Wave Infrared Hyperspectral Remote Sensing of Chemical Clouds: A Focus on Signal Processing Approaches,” IEEE Signal Process. Mag., Vol. 31, No. 4, pp. 120-141, Jul. 2014. https://doi.org/10.1109/MSP.2013.2294804
  2. D. H. Kim, “FTIR for Remote Chemical Detection,” Journal of the Korea Institute of Military Science and Technology, Vol. 18, No. 1, pp. 153-169, Jun. 2011.
  3. A. Beil, R. Daum, R. Harig and G. Matz, "Remote Sensing of Atmospheric Pollution by Passive FTIR Spectrometry," in Proc. of SPIE, Vol. 3493, pp. 32-43, Sep. 1998.
  4. D. F. Flanigan, "Prediction of the Limits of Detection of Harzardous Vapors by Passive Infrared with the Use of MODTRAN," Applied Optics, Vol. 35, Issue 30, pp. 6368-6374, Oct. 1996.
  5. R. Harrig and G. Matz, "Toxic Cloud Imaging by Infrared Spectrometry: A Scanning FTIR System for Identification and Visualization," Field Analytical Chemistry and Technology, Vol. 5, Issue 1-2, pp. 75-90, May 2001. https://doi.org/10.1002/fact.1008
  6. A. Vallieres, A. Villemaire, M. Chamberland, L. Belhumeur, V. Farley, J. Giroux and J. F. Legault, "Algorithms for Chemical Detection, Identification and Quantification for Thermal Hyperspectral Imagers," in Proc. of SPIE, Vol. 5995, pp. 147-157, Nov. 2005.
  7. V. Farley, A. Vallieres, A. Villemaire, M. Chamberland, P. Lagueux and J. Giroux, "Chemical Agent Detection and Identification with a Hyperspectral Imaging Infrared Sensor," in Proc. of SPIE, Vol. 5995, pp. 6739-6749, Sep. 2007.
  8. D. Cerra, R. Muller and P. Reinartz, “Noise Reduction in Hyperspectral Images through Spectral Unmixing,” IEEE Geosci. Remote Sens. Lett., Vol. 11, No. 1, pp. 109-113, Jan. 2014. https://doi.org/10.1109/LGRS.2013.2247562
  9. W. Li, S. Prasad and J. E. Fowler, “Noise-adjusted Subspace Discriminant Analysis for Hyperspectral Imagery Classification,” IEEE Geosci. Remote Sens. Lett., Vol. 10, No. 6, pp. 1374-1378, Nov. 2013. https://doi.org/10.1109/LGRS.2013.2242042
  10. G. Chen and S. E. Qian, “Denoising of Hyperspectral Imagery using Principal Component Analysis and Wavelet Shrinkage,” IEEE Trans. Geosci. Remote Sens., Vol. 49, No. 3, pp. 973-980, Mar. 2011. https://doi.org/10.1109/TGRS.2010.2075937
  11. N. Renard, S. Bourennane and J. B. Talon, “Denoising and Dimensionality Reduction using Multilinear Tools for Hyperspectral Images,” IEEE Geosci. Remote Sens. Lett., Vol. 5, No. 2, pp. 138- 142, Apr. 2008. https://doi.org/10.1109/LGRS.2008.915736
  12. C. C. Funk, J. Theiler, D. A. Roberts and C. C. Borel, “Clustering to Improve Matched Filter Detection of Weak Gas Plumes in Hyperspectral Thermal Imagery,” IEEE Trans. Geosci. Remote Sens., Vol. 39, No. 7, pp. 1410-1420, Jul. 2001. https://doi.org/10.1109/36.934073
  13. D. Manolakis and G. A. Shaw, "Detection Algorithms for Hyperspectral Imaging Applications," IEEE Signal Process. Mag., Vol. 19, Issue 1, pp. 29-43, Jan. 2002. https://doi.org/10.1109/79.974724
  14. S. Walsh, L. Chilton, M. Tardiff and C. Metoyer, "Effect of Background Emissivity on Gas Detection in Thermal Hyperspectral Imagery," Pacific Northwest National Laboratory, PNNL-17874, pp. 29-43, Jul. 2008.
  15. M. L. Polak, J. L. Hall and K. C. Herr, “Passive Fourier-Transform Infrared Spectroscopy of Chemical Plumes: An Algorithm for Quantitative Interpolation and Real-Time Background Removal,” Applied Optics, Vol. 34, No. 24, pp. 5406-5412, Aug 1992. https://doi.org/10.1364/AO.34.005406
  16. N. Keshava and J. F. Mustard, “Spectral Unmixing,” IEEE Signal Process. Mag., Vol. 19, No. 1, pp. 44- 57, Jan. 2002. https://doi.org/10.1109/79.974727
  17. R. Harrig, “Passive Remote Sensing of Pollutant Clouds by FTIR Spectrometry: Signal-to-Noise Ratio as a Function of Spectral Resolution,” Applied Optics, Vol. 43, No. 23, pp. 4603-4610, Aug. 2004. https://doi.org/10.1364/AO.43.004603
  18. K. Tan, E. Li, Q. Du and P. Du, “Hyperspectral Image Classification Using Band Selection and Morphological Profiles,” IEEE J. Sel. Topics in Appl. Earth Observ. Remote Sens., Vol. 7, No. 1, pp. 40-48, Jan. 2014. https://doi.org/10.1109/JSTARS.2013.2265697