• 제목/요약/키워드: Real-time image classification

검색결과 170건 처리시간 0.031초

AI 학습모델 및 AI모델 서빙 서버 개발을 통한 생활안전 예방 서비스 신고 이미지 자동분류 시스템 개발에 대한 연구 (A Study on the Development of an Automatic Classification System for Life Safety Prevention Service Reporting Images through the Development of AI Learning Model and AI Model Serving Server)

  • 정영식;김용운;임정일
    • 한국재난정보학회 논문집
    • /
    • 제19권2호
    • /
    • pp.432-438
    • /
    • 2023
  • 연구목적: 생활안전 예방서비스 앱에서 신고되는 이미지를 AI를 사용하여 실시간으로 위험 카테고리를 자동으로 분류하여 사용자에게 편리한 위험신고를 가능하게 하는 것을 목적으로 한다. 연구방법: 인터넷으로 상호연결되는 생활안전 예방서비스 플랫폼, 생활안전 예방서비스 앱, AI 모델 서빙 서버와 sftp 서버로 구성되는 시스템을 통하여 신고된 생활안전 이미지를 실시간으로 자동분류하며, 이때 사용되는 AI모델 생성을 위한 AI 학습 알고리즘도 개발하였다. 연구결과: 이미지를 실시간으로 AI 처리하여 자동으로 분류할 수 있게 되어, 신고자가 생활안전 관련 사항을 보다 편리하게 신고할 수 있게 되었다. 결론: 본 논문에서 제시하는 AI 이미지 자동분류 시스템은 90% 이상의 분류 정확도로 신고 이미지를 실시간으로 자동분류하여 신고자가 간편하게 생활안전 관련 이미지를 신고할 수 있게 되었으며 향후 생활안전 예방서비스 앱의 사용자의 증가에 따라 더욱 빠르고 정확한 AI 모델 개발 및 시스템 처리용량 향상이 필요하다.

연속 영상 기반 실시간 객체 분할 (Real-Time Object Segmentation in Image Sequences)

  • 강의선;유승훈
    • 정보처리학회논문지B
    • /
    • 제18B권4호
    • /
    • pp.173-180
    • /
    • 2011
  • 본 논문은 GPU(Graphics Processing Unit) 에서 CUDA(Compute Unified Device Architecture)를 사용하여 실시간으로 객체를 분할하는 방법을 소개한다. 최근에 감시 시스템, 오브젝트 추적, 모션 분석 등의 많은 응용 프로그램들은 실시간 처리가 요구된다. 이러한 단계의 선행부분인 객체 분할 기법은 기존 CPU 기반의 시스템으로는 실시간 처리에 제약이 발생한다. NVIDIA에서는 Parallel Processing for General Computation 을 위해 그래픽 하드웨어 제약을 개선한 CUDA platform을 제공하고 있다. 본 논문에서는 객체 추출 단계에 대표적인 적응적 가우시안 혼합 배경 모델링(Adaptive Gaussian Mixture Background Modeling) 알고리즘과 Classification 기법으로 사용되는 CCL (Connected Component Labeling) 알고리즘을 적용하였다. 본 논문은 2.4GHz를 갖는 Core2 Quad 프로세서와 비교하여 평가하였고 그 결과 3~4배 이상의 성능향상을 확인할 수 있었다.

Integrated GUI Environment of Parallel Fuzzy Inference System for Pattern Classification of Remote Sensing Images

  • Lee, Seong-Hoon;Lee, Sang-Gu;Son, Ki-Sung;Kim, Jong-Hyuk;Lee, Byung-Kwon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제2권2호
    • /
    • pp.133-138
    • /
    • 2002
  • In this paper, we propose an integrated GUI environment of parallel fuzzy inference system fur pattern classification of remote sensing data. In this, as 4 fuzzy variables in condition part and 104 fuzzy rules are used, a real time and parallel approach is required. For frost fuzzy computation, we use the scan line conversion algorithm to convert lines of each fuzzy linguistic term to the closest integer pixels. We design 4 fuzzy processor unit to be operated in parallel by using FPGA. As a GUI environment, PCI transmission, image data pre-processing, integer pixel mapping and fuzzy membership tuning are considered. This system can be used in a pattern classification system requiring a rapid inference time in a real-time.

Classification of Water Areas from Satellite Imagery Using Artificial Neural Networks

  • Sohn, Hong-Gyoo;Song, Yeong-Sun;Jung, Won-Jo
    • Korean Journal of Geomatics
    • /
    • 제3권1호
    • /
    • pp.33-41
    • /
    • 2003
  • Every year, several typhoons hit the Korean peninsula and cause severe damage. For the prevention and accurate estimation of these damages, real time or almost real time flood information is essential. Because of weather conditions, images taken by optic sensors or LIDAR are sometimes not appropriate for an accurate estimation of water areas during typhoon. In this case SAR (Synthetic Aperture Radar) images which are independent of weather condition can be useful for the estimation of flood areas. To get detailed information about floods from satellite imagery, accurate classification of water areas is the most important step. A commonly- and widely-used classification methods is the ML(Maximum Likelihood) method which assumes that the distribution of brightness values of the images follows a Gaussian distribution. The distribution of brightness values of the SAR image, however, usually does not follow a Gaussian distribution. For this reason, in this study the ANN (Artificial Neural Networks) method independent of the statistical characteristics of images is applied to the SAR imagery. RADARS A TSAR images are primarily used for extraction of water areas, and DEM (Digital Elevation Model) is used as supplementary data to evaluate the ground undulation effect. Water areas are also extracted from KOMPSAT image achieved by optic sensors for comparison purpose. Both ANN and ML methods are applied to flat and mountainous areas to extract water areas. The estimated areas from satellite imagery are compared with those of manually extracted results. As a result, the ANN classifier performs better than the ML method when only the SAR image was used as input data, except for mountainous areas. When DEM was used as supplementary data for classification of SAR images, there was a 5.64% accuracy improvement for mountainous area, and a similar result of 0.24% accuracy improvement for flat areas using artificial neural networks.

  • PDF

검출과 분류기능이 탑재된 실시간 지능형 PTZ카메라 (Real-Time PTZ Camera with Detection and Classification Functionalities)

  • 박종화;안태기;전지혜;조병목;박구만
    • 한국통신학회논문지
    • /
    • 제36권2C호
    • /
    • pp.78-85
    • /
    • 2011
  • 본 논문에서는 카메라 자체에서 움직임을 검출하고 분류된 객체를 추척할 수 있는 지능형 PTZ 카메라 시스템을 제안하였다. 추적하고자 하는 객체가 검출되면 분류하고, 객체의 움직임에 따라 PTZ 카메라가 실시간으로 추적한다. 검출을 위해 GMM을 사용하였고 검출성능을 높이기 위해 그림자 제거 기법을 적용하였다. 검출된 객체의 분류를 위해 Legendre 모멘트를 적용하였다. 본 논문에서는 카메라의 초점 조절을 사용하지않고 영상의 중심과 객체와의 방향, 거리, 속도 정보만을 이용하여 PTZ 카메라의 움직임을 제어하는 방법을 제안하였다. TI DM6446 Davinci를 이용하여 실시간으로 객체의 검출, 분류와 추적이 가능한 카메라 시스템을 구성하였다. 실험 결과 사람과 차량을 구분하고, 움직임의 속도가 빠른 차량에 대해서도 본 추적시스템은 안정적으로 동작함을 확인하였다.

텍스쳐 특징과 구조적인 정보를 이용한 문서 영상의 분할 및 분류 (Document Image Segmentation and Classification using Texture Features and Structural Information)

  • 박근혜;김보람;김욱현
    • 융합신호처리학회논문지
    • /
    • 제11권3호
    • /
    • pp.215-220
    • /
    • 2010
  • 본 논문은 문서 영상을 대상으로 표, 그림, 글자 등의 각 구성요소들을 자동으로 분류하기 위한 새로운 텍스쳐 기반의 영상 분할 및 분류 방법을 제안한다. 제안한 방법은 문서 영상 분할 단계와 문서 영상 내 구성요소 분류 단계로 이루어진다. 먼저 영상 분할을 수행한 후, 분할된 영역을 대상으로 문서 영상의 구성 요소들을 분류하는데, 이때 각 구성 요소는 서로 다른 텍스쳐를 가지고 있는 영역이라는 특징을 이용한다. 분할된 영역들을 분류하기 위한 텍스쳐 특징을 추출하기 위해 다양한 텍스쳐 분석에 광범위하게 사용되는 2차원 가보필터를 이용한다. 제안한 방법은 구성 요소와 사용 언어에 대한 사전 지식을 이용하지 않으면서 문서 영상의 분할 및 구성요소 분류에서 좋은 성능을 보인다. 제안한 방법은 멀티미디어 데이터 검색, 실시간 영상 처리 등과 같은 다양한 분야에 적용 될 수 있다.

딥러닝 모델을 이용한 비전이미지 내의 대상체 분류에 관한 연구 (A Study on The Classification of Target-objects with The Deep-learning Model in The Vision-images)

  • 조영준;김종원
    • 한국산학기술학회논문지
    • /
    • 제22권2호
    • /
    • pp.20-25
    • /
    • 2021
  • 본 논문은 Deep-learning 기반의 검출모델을 이용하여 연속적으로 입력되는 비디오 이미지 내의 해당 대상체를 의미별로 분류해야하는 문제에 대한 구현방법에 관한 논문이다. 기존의 대상체 검출모델은 Deep-learning 기반의 검출모델로서 유사한 대상체 분류를 위해서는 방대한 DATA의 수집과 기계학습과정을 통해서 가능했다. 대상체 검출모델의 구조개선을 통한 유사물체의 인식 및 분류를 위하여 기존의 검출모델을 이용한 분류 문제를 분석하고 처리구조를 변경하여 개선된 비전처리 모듈개발을 통해 이를 기존 인식모델에 접목함으로써 대상체에 대한 인식모델을 구현하였으며, 대상체의 분류를 위하여 검출모델의 구조변경을 통해 고유성과 유사성을 정의하고 이를 검출모델에 적용하였다. 실제 축구경기 영상을 이용하여 대상체의 특징점을 분류의 기준으로 설정하여 실시간으로 분류문제를 해결하여 인식모델의 활용성 검증을 통해 산업에서의 활용도를 확인하였다. 기존의 검출모델과 새롭게 구성한 인식모델을 활용하여 실시간 이미지를 색상과 강도의 구분이 용이한 HSV의 칼라공간으로 변환하는 비전기술을 이용하여 기존모델과 비교 검증하였고, 조도 및 노이즈 환경에서도 높은 검출률을 확보할 수 있는 실시간 환경의 인식모델 최적화를 위한 선행연구를 수행하였다.

실시간 응용을 위한 안드로이드 플랫폼에서의 안면 검출 시스템 구현 (Implementation of Face Detection System on Android Platform for Real-Time Applications)

  • 한병길;임길택
    • 대한임베디드공학회논문지
    • /
    • 제8권3호
    • /
    • pp.137-143
    • /
    • 2013
  • This paper describes an implementation of face detection technology for a real-time application on the Android platform. Java class of Face-Detection for detection of human face is provided by the Android API. However, this function is not suitable to apply for the real-time applications due to inadequate detection speed and accuracy. In this paper, the AdaBoost based classification method which utilizes Local Binary Pattern (LBP) histogram is employed for face detection. The face detection module has been developed by C/C++ language for high-speed image processing, and this module is included to the Android platform using the Java Native Interface (JNI). The experiments were carried out in the Java-based environment and JNI-based environment. The experimental results have shown that the performance of JNI-based is faster than Java-based method and our system is well enough to apply for real-time applications.

Lane Detection and Tracking Using Classification in Image Sequences

  • Lim, Sungsoo;Lee, Daeho;Park, Youngtae
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제8권12호
    • /
    • pp.4489-4501
    • /
    • 2014
  • We propose a novel lane detection method based on classification in image sequences. Both structural and statistical features of the extracted bright shape are applied to the neural network for finding correct lane marks. The features used in this paper are shown to have strong discriminating power to locate correct traffic lanes. The traffic lanes detected in the current frame is also used to estimate the traffic lane if the lane detection fails in the next frame. The proposed method is fast enough to apply for real-time systems; the average processing time is less than 2msec. Also the scheme of the local illumination compensation allows robust lane detection at nighttime. Therefore, this method can be widely used in intelligence transportation systems such as driver assistance, lane change assistance, lane departure warning and autonomous vehicles.

분산영상 매칭을 이용한 소형 쿼드콥터의 실내 비행 위치인식과 자율비행 (Position Recognition and Indoor Autonomous Flight of a Small Quadcopter Using Distributed Image Matching)

  • 진태석
    • 한국산업융합학회 논문집
    • /
    • 제23권2_2호
    • /
    • pp.255-261
    • /
    • 2020
  • We consider the problem of autonomously flying a quadcopter in indoor environments. Navigation in indoor settings poses two major issues. First, real time recognition of the marker captured by the camera. Second, The combination of the distributed images is used to determine the position and orientation of the quadcopter in an indoor environment. We autonomously fly a miniature RC quadcopter in small known environments using an on-board camera as the only sensor. We use an algorithm that combines data-driven image classification with image-combine techniques on the images captured by the camera to achieve real 3D localization and navigation.