
연속 영상 기반 실시간 객체 분할 173

연속 영상 기반 실시간 객체 분할

강 의 선†․유 승 훈††

요 약

본 논문은 GPU(Graphics Processing Unit) 에서 CUDA(Compute Unified Device Architecture)를 사용하여 실시간으로 객체를 분할하는 방

법을 소개한다. 최근에 감시 시스템, 오브젝트 추적, 모션 분석 등의 많은 응용 프로그램들은 실시간 처리가 요구된다. 이러한 단계의 선행부분

인 객체 분할 기법은 기존 CPU 기반의 시스템으로는 실시간 처리에 제약이 발생한다. NVIDIA에서는 Parallel Processing for General

Computation 을 위해 그래픽 하드웨어 제약을 개선한 CUDA platform을 제공하고 있다. 본 논문에서는 객체 추출 단계에 대표적인 적응적 가

우시안 혼합 배경 모델링(Adaptive Gaussian Mixture Background Modeling) 알고리즘과 Classification 기법으로 사용되는 CCL (Connected

Component Labeling) 알고리즘을 적용하였다. 본 논문은 2.4GHz를 갖는 Core2 Quad 프로세서와 비교하여 평가하였고 그 결과 3~4배 이상의

성능향상을 확인할 수 있었다.

키워드 : GPU(Graphics Processing Unit), CUDA(Compute Unified Device Architecture), 객체 분할

Real-Time Object Segmentation in Image Sequences

Eui-Seon Kang†․Seung-Hun Yoo††

ABSTRACT

This paper shows an approach for real-time object segmentation on GPU (Graphics Processing Unit) using CUDA (Compute Unified

Device Architecture). Recently, many applications that is monitoring system, motion analysis, object tracking or etc require real-time

processing. It is not suitable for object segmentation to procedure real-time in CPU. NVIDIA provide CUDA platform for Parallel

Processing for General Computation to upgrade limit of Hardware Graphic. In this paper, we use adaptive Gaussian Mixture Background

Modeling in the step of object extraction and CCL(Connected Component Labeling) for classification. The speed of GPU and CPU is

compared and evaluated with implementation in Core2 Quad processor with 2.4GHz.The GPU version achieved a speedup of 3x-4x over

the CPU version.

Keywords : GPU(Graphics Processing Unit), CUDA(Compute Unified Device Architecture), Object Segmentation

1. Introduction1)

Real-time segmentation of moving regions in image

sequences is a fundamental step in many vision systems

including automated visual surveillance, human-machine

interface, and very low-bandwidth telecommunications [1].

A typical method is background subtraction. Background

subtraction involves calculating a reference image,

subtracting each new frame from this image and

thresholding the result. This method suffers from many

problems and requires a training period absent of

†정 회 원:숭실대학교 베어드학부 조교수
††정 회 원:삼성전자 책임연구원(교신저자)
논문접수: 2010년 12월 2일
수 정 일: 1차 2011년 2월 15일, 2차 2011년 4월 9일
심사완료: 2011년 4월 20일

foreground objects. The motion of background objects

after the training period and foreground objects motion

less during the training period would be considered as

permanent foreground objects. In addition, the approach

cannot cope with gradual illumination changes in the

scene. These problems lead to the requirement that any

solution must constantly re-estimate the background

model [1].

Many adaptive background-model methods have been

proposed to deal with these slowly-changing stationary

signals. One of the successful solutions to these problems

is to use a multi-color background model per pixel

proposed by Grimson et al. [2-3]. An adaptive Gaussian

mixture model can deal with lighting changes,

slow-moving objects, and introducing and removing

object from the scene. Dynamically, this system updates

http://dx.doi.org/10.3745/KIPSTB.2011.18B.4.173

174 정보처리학회논문지 B 제18-B권 제4호(2011. 8)

(Fig. 1) Simplified CUDA architecture

background models and performs the multiple Gaussian

distribution more efficiently. Also, the Gaussian mixture

modeling was recently used the many other places [1, 4,

5]. For the better foreground segmentation, color of YUV

channel and depth that is obtained by the pair images are

used to compose the Gaussian mixture model at each

pixel in the [4]. Although this algorithm shows the

efficient result, its computational cost is very expensive.

After the object detection, the detected objects must be

classified. It usually used a connected components labeling

(CCL) algorithm. In papers by Suzuki, Wu et al. [6-8],

approaches and algorithms for CCL are categorized into a

number of groups. Two pass algorithms show very high

performance, but require large memory to store label

equivalence. Multi-pass algorithms scan an image in the

forward and backward raster directions alternately to

propagate label equivalences until no label changes. The

performance of these algorithms is very dependent on

complexity of connected component and speed of

resolving the label equivalences at analysis phase. In

addition, many of them are focusing on sequential

approaches and their optimizations for ordinary computer

architecture.

GPU on consumer-level graphic cards has evolved into

a very powerful and flexible streaming processor, which

includes fully programmable floating-point pipelines giving

good computational power and memory bandwidth [9].

The power and flexibility of GPUs provide an attractive

platform for computationally demanding tasks with

respect to specific graphics and general-purpose

computations (which is also the target of general-

purpose GPU, called GPGPU [10].). In most cases, GPU-

based implementations are much faster than comparable

implementations on CPU in the fields of image processing,

linear algebra, data sorting, computational physics, and

database queries [9]. Recently, NVIDIA released its latest

GPU model, CUDA (Compute Unified Device Architecture)

that provides an extended version of ANSI-C for

general-purpose applications based on GPU [11].

In this paper we present background modeling, object

detection and classification algorithms for real-time object

segmentation on GPU. The object segmentation needs to

be implemented by considering GPU characteristics in

order to utilize the maximum GPU performance. The

importance of our approach is that almost all the

computations are performed on the GPU, so that object

segmentation can obtain faster results than CPU based

approach. To fully utilize the computational power of

GPU, the algorithm for object segmentation is modified

according to the characteristics of GPU. Also, to

maximize the GPU’s computation power, the data

transmission between CPU and GPU should be minimized.

This paper is organized as follows. The architecture of

CUDA and programming model are presented in Section

2, and the algorithms for object detection and

classification are described in Section 3. Section 4

describes how to implement object segmentation algorithm

using CUDA. Section 5 illustrates the experimental results

of our proposed methods and shows performance

comparisons in computation speed between CPU and

GPU, Section 6 conclude our work.

2. CUDA

CUDA has become a standard platform for GPGPU

computing in NVIDIA graphics cards with a chipset G80

or superior. In this section, we briefly review the CUDA

architecture and programming model to help understand

the development environment.

2.1 CUDA Architecture

CUDA contains many SIMD (Single Instruction

Multiple Data) stream multi-processors (SM), and each

SM consists of 8 stream processors (SPs). In case of

NVIDIA G80 series, the chip has a total of 128 SPs

distributed across sixteen multiprocessors, each with

shared memory, cache, and registers[11]. Shared memory

enables parallel data cache from global memory for

accelerating memory access. (Fig.1) shows simplified

version of CUDA architecture.

연속 영상 기반 실시간 객체 분할 175

(Fig. 2) CUDA programming model

(Fig. 3) The processing steps for object segmentation

The advantages of CUDA architecture are the

following:

∙Hardware abstraction: NVIDIA has hidden the

architectures of its GPUs beneath an application

programming interface (API). Programmers need not to

know the complex details of the GPU hardware.

∙Comfortable development environment: CUDA

programming interface provides a relatively simple path

for users familiar with the C programming language to

easily write programs for execution by the device.

∙General DRAM memory addressing: CUDA provides

general DRAM memory addressing for more

programming flexibility. From a programming

perspective, GPU can gather data from any location in

DRAM, and also scatter data to any location in

DRAM, just like on a CPU.

∙Parallel data cache: CUDA has on-chip shared memory

with very fast general read and write access, that

threads use to share data with each other.

∙Thread synchronization: Synchronization within a thread

block is entirely managed in hardware. Synchronization

among thread blocks is achieved by allowing a kernel

to complete and starting a new kernel.

2.2 CUDA Programming Model

The CUDA programming model is similar to the

familiar SPMD (single-program multiple data) model in

their styles[12]. (Fig. 2) shows the CUDA programming

model with an example of CUDA code sequence.

The programmer supplies a single source program

encompassing both host (CPU) and kernel (GPU) code.

The host code transfers data to and from the GPU’s

global memory and initiates the kernel code by calling a

function. A kernel runs several blocks of threads and

each thread performs a single computation. These threads

are organized into a hierarchy of grids of thread blocks.

A grid of thread blocks consists of a number of blocks

that execute the same kernel. A thread block consists of

a batch of threads that access data from the shared

memory and executes instructions in parallel. The

maximum number of threads per block is 512. In (Fig. 2),

first kernel 2-D grid is 3x2 thread blocks and each block

is 3x2 threads. Kernels are separated by an inter-kernel

synchronization barrier.

Threads may access data from multiple memory spaces

during their execution. Each thread has a private local

memory. Each thread block has a shared memory visible

to all threads of the block that has the same lifetime as

the block. Finally, all threads have access to the same

global memory[11].

3. Real-time Object Segmentation

The object segmentation aims at segmenting regions

corresponding to moving objects from the rest of an

image. Subsequent processes such as tracking and

behavior recognition are greatly dependent on it.

Generally, the process of object segmentation involves

background modeling, object detection, and object

classification.

The background model and update techniques are

based on the Gaussian mixture background model and

their algorithm deals robustly with lighting changes,

repetitive motion of scene elements. After objects are

extracted from the background model, the noises are

eliminated to get the good object detection, and each

object is classified by using our proposed connected

component labeling algorithm technique. All of the

processes are implemented on GPU.

176 정보처리학회논문지 B 제18-B권 제4호(2011. 8)

(Fig. 4) The result of object detection

3.1 Background Model and Update

Firstly, each pixel has the background models for

moving object extraction. The history of each pixel,{X1,

...Xt}, is modeled by using a mixture of K Gaussian

distributions as background models. The probability is

expressed as:

P

 × ∑ i t (1)

K is normally set to be between 3 and 7. We use 3

because our experimental environment is performed indoor

that does not have many changing factor compared to

outdoor environment. K Gaussian mixture background

model is composed μi,t mean, ∑ i covariance of RGB
color, and weight for distribution at the time t.

 is a Gaussian probability density function:

∑det∑

 exp

∑

(2)

If a pixel distribution of current input image matches

one of the K Gaussian distribution (M = 1), Gaussian

distribution of matched pixel becomes background, so the

factors of background models are updated as follows:

wit wkt×match unmatch
t ptpX t

(3)

t ptpX ttTX tt

 ∑

where is the learning rate. In the our system, if the

value of pixel does not match any Gaussian distribution,

then we find the minimum weight and replace the

attribute values of background distribution by those of

the current object distribution(M = 0). The reason is that

the object should be merged to the background if it does

not move for a longtime. If the pixel value matches

several Gaussian distributions, then we select the largest

weight, and update its background model’s components.

3.2 Foreground Segmentation

When the distribution of each pixel value becomes

smaller than 2.5 standard deviation of Gaussian

distribution on the background models and the weight of

distribution is higher than a threshold, our system

recognizes the pixel as a moving object. If the weight of

background distribution is lower than the threshold, the

pixel is not recognized as the object. However, the

attribute values of background distribution are updated

similarly as in the previous section.

The detected moving objects contain noises, and we

need remove the noises. For the removal of noise, we use

two methods. One is the morphological operation that is

composed by the dilation and erosion. The other is the

median filter. The erosion can reduce the size of the spot

of a small noise. After that, we use the median filter to

remove the smaller noise spot. The use of dilation twice

combines the separated nearby segments by enlarging

them. After the noise elimination, moving objects are

detected by the background modeling and the distribution

of the current image pixels. (Fig.4) shows the results

after noises are removed.

3.3 Object Segmentation

After detecting the moving object, we must classify

연속 영상 기반 실시간 객체 분할 177

(Fig. 6) Results of each phase in Label Array

(a)Input image; (b)Init; (c)Scan; (d)Analysis; (e)Link; (f)Label.
(Fig. 5) Sequence diagram of proposed CCL algorithm

(Fig. 7) The result of object classification

each object for tracking. As a kind of multi-pass

algorithm, our proposed algorithm has 6 phases and

requires a number of iterations to complete labeling

operations

Init phase assigns initial labels of each pixel belonging

to objects. If a pixel is belonging to object, unique index

of each thread (allocated to each pixel) is assigned to

index of the pixel in the Label array. Otherwise,

background value is assigned. Thread operations with

background pixels will be ignored in following phases. In

Scanning phase, examines of directly neighboring pixels

belonging to a mask introduced as ‘forward scan mask’ in

[7-8]. After that, threads find and write lowest label

including itself to the Label Array. In Analysis phase,

each thread find representative label as a root of each

pixel to propagate it to each sub-region by using labels

written in Label Array. Representative label means a label

written in Label Array equal to each pixel index. If

threads find each representative label, threads write them

into Label Array. Link phase links each connected

sub-region to build a fully labeled connected component.

Each thread examines labels of neighborhood pixels and

find lowest label. If a pixel in a sub-region is directly

neighboring with other sub-regions, lower or higher

representative labels can be found. In Label phase, each

thread finds its representative label to its pixel. After this

phase, Label Array will have a number of large

sub-regions or fully labeled connected components if all

directly connected sub-regions are linked. After Label

phase, each thread scans labels of all neighborhood pixels

to check all directly connected sub-regions are linked. If

component labeling is not completed, Rescan phase set a

flag to true, then host will repeat execution of Analysis,

Link, Label, and Rescan phase in order. (Fig.6) shows the

results of each phase in Label Array.

We construct the binary images from the detected

moving object image, and then classify each extracted

object by its boundary box which encloses it.

<Table 1> shows the result of a comparison of our

system to reference papers. As shown table.1, the

performance of our system using GPU is very high,

compared to reference system.

178 정보처리학회논문지 B 제18-B권 제4호(2011. 8)

(Fig. 8)Performance evaluation results (unit:frame/sec.)

Method Frame Size Speed

Adaptive Background Mixture Modeling[15] 160 * 120 11~13 frame/sec

Modeling Using Color and Depth[16] 320 * 240 15 frame/sec

Effective Gaussian Mixture Learning[17] 160 * 120 15 frame/sec

Out System 320 * 240 83 frame/sec

<Table 1> The comparison of Speed in our system and reference papers

4. Implementation

The CUDA programming style does not so look

different traditional C language because CUDA is a

minimal extension of the C programming language. While

CUDA requires analysis of algorithms and data to find

the optimal numbers of threads and blocks that will keep

the GPU fully utilized [13]. The size of global data and

the number of thread processors and block in the GPU

can have a significant impact on the overall performance.

To help the optimization of performance, NVIDIA

provides an Excel spreadsheet called the Occupancy

Calculator (OCC) [13]. It considers all factors to suggest

the best method of decomposing the data.

We control the number of threads per block to

maximize the occupancy of multiprocessor through OCC.

In case of input image size 320x240, we put 256 threads

in each block and a grid is consisted of 20x15 blocks. In

addition, all of the processes only use global memory

without shared memory because many operations in

algorithms need not data sharing and largely per-pixel

independent. The entire images are loaded on to the GPU

once before execution of operations to avoid latency due

to data transfer. Although our proposed CCL algorithm

requires several iterations for object images with

connectivity, required iterations are just a few and overall

execution time is less than expectation. In a test with

2048x2048 images, they were labeled in just 3 iterations.

5. Experiments

We tested the speed of object segmentation with

320x240 input frames. The GPU is NVIDIA Geforce GTX

260 with 216 stream processors, and the CPU is Intel

Core2Quad Q6600 processor (2.4GHz). All of the processes

were implemented in C language including CUDA syntax,

and compiled under the same condition.

As shown (Fig.8), our experimental result shows that

연속 영상 기반 실시간 객체 분할 179

our algorithm on GPU is much faster than that on CPU.

For object detection including noise removal, the CUDA

version achieves 3x speedup compared to CPU version. In

case of object classification using CCL algorithm, we

compared our proposed algorithm with a conventional

labeling algorithm proposed in [14]. For object

classification, the speed enhancement of GPU is far

bigger than CPU. Finally, we can achieve real-time object

segmentation on GPU using CUDA and provide the basis

for real-time tracking or behavior analysis.

6. Conclusion

Real-time object segmentation of moving regions in

image sequences is a fundamental step in many vision

systems including automated visual surveillance, human-

machine interface, and low-bandwidth telecommunications.

In this paper, we have presented a new novel GPU-based

algorithm for real time object segmentation by employing

graphics hardware. We have proposed a method to detect

moving objects using existing Gaussian Mixture Model

and fast connected-component labeling algorithm to

classify detected objects. Through our experiments, GPU

version shows faster performance than CPU version. In

processing of object segmentation, GPU version was at

least 3 times faster than CPU version. As a result, the

evaluation proves the GPU even good for a real-time

system that handles a log of data at the same time.

Finally, we can achieve real-time object segmentation on

GPU using CUDA and provide the basis for real-time

tracking or behavior analysis.

References

[1] P. Kaew, T. Pong and R. Bowden, "An Improved Adaptive

Background Mixture Model for Real-Time Tracking with

Shadow Detection," Proc. European Workshop Advanced

Video Based Surveillance Systems, Sep., 2001

[2] G. Wel, S. C. Romano R. Lee L. “Using adaptive tracking to

classify and monitor activities in a site,” in Proceedings.1998

IEEE Computer Society Conference on Computer Vision and

Pattern Recognition, 1998.

[3] Stauffer C, Grimson W. E. L, “Learning patterns of activity

using real-time tracking,” IEEE Transactions on Pattern

Analysis &Machine Intelligence, vol.22(8), pp.747-57, 2000.

[4] G. M. Harville and J. Woodfill.“Foreground Segmentation

Usingadaptive Mixture Models in Color and Depth,”

Workshopon Detection and Recognition of Events in Video,

2001.

[5] P. W.Power and J. A.Schoonees. “Understanding

backgroundmixture models for foreground segmentation,”

IVCNZ, Nov., 2002.

[6] K. Suzuki, I. Horiba and N. Sugie, “Linear-time connected

component labeling based on sequential local operations,”

Comput. Vis. Image Underst. 89(1), pp.1-23, 2003.

[7] L. He, Y. Chao, K. Suzuki and K. Wu, “Fast

connected-component labeling,” Pattern Recognition.42,

pp.1977-1987, 2009.

[8] K. Wu, E. Otoo, K. Suzuki, “Optimizing two-pass

connected-component labeling algorithms,” Pattern Anal.

Applic.12, pp.117-135, 2009.

[9] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Kruger,

A. E. Lefohn, and T. J. Purcell, “A Survey of

General-Purpose Computation on Graphics Hardware,”

Comput. Graph.Forum 26, pp.80-113, 2007.

[10] M. Pharr and R. Fernando, “GPU Gems 2: Programming

Techniques for High-Performance Graphics and

General-Purpose Computation”, Addison Wesley,

Messachusetts, 2005.

[11] NVIDIA, 2007, CUDA Technology. Available from:

http://www.nvidia.com/CUDA.

[12] Nickolls, J. Buck, I. Garland, M. Skadron. K,“Scalable Parallel

Programming with CUDA”, ACM6(2), pp.40-53, 2008

[13]Halfhill, T.R.,2008, “Parallel Processing With CUDA”,

Microprocessor Report [Online] Available from:

http://www.MPRonline.com

[14] P. Kumar, K. Palaniappan, A. Mittal, and G. Seetharaman,

“Parallel Blob Extraction Using the Multi-core Cell

Processor”, ACIVS 2009, LNCS 5807, pp.320-332, 2009.

[15] C.Stauffer, W.E.L. Grimson. “Adaptive Backgroud Mixture

Models for Real-Time Tracking,” Proc. CVPR, Vol.2, pp.

246-252, 1999.

[16] M.Harville, G.Gordon, and J. Woodfill“Adaptive Video

Background Modeling Using Color and Depth,” Proc. IEEE.

Published in the 2001 International Conference on Image

Processing (ICIP-2001), October, 7-10, 2001

[17] D. S. Lee“Effective Gaussian Mixture Learning for Video

Background Subtraction,” IEEE Transactions on Pattern

Analysis and Machine Inteeligence, Vol.27, No.5, May, 2005.

강 의 선

e-mail : kanges86@naver.com

2002년 숭실대학교 컴퓨터학과(공학석사)

2007년 숭실대학교 미디어학과(공학박사)

2007년∼현 재 숭실대학교 베어드학부

조교수

관심분야 :멀티미디어, 모바일 웹

180 정보처리학회논문지 B 제18-B권 제4호(2011. 8)

유 승 훈

e-mail : capstoney@korea.ac.kr

2003년 한성대학교 정보통신공학과(학사)

2010년 고려대학교 전자컴퓨터공학과

(공학박사)

2010년∼2010년 한국과학기술연구원 박사

후 과정

2010년∼현 재 삼성전자 책임연구원

관심분야 :영상 정합, 영상 인식 및 추적, 증강현실 등

