• Title/Summary/Keyword: Real-time Segmentation

Search Result 284, Processing Time 0.033 seconds

Research of Vehicles Longitudinal Adaptive Control using V2I Situated Cognition based on LiDAR for Accident Prone Areas (LiDAR 기반 차량-인프라 연계 상황인지를 통한 사고다발지역에서의 차량 종방향 능동제어 시스템 연구)

  • Kim, Jae-Hwan;Lee, Je-Wook;Yoon, Bok-Joong;Park, Jae-Ung;Kim, Jung-Ha
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.5
    • /
    • pp.453-464
    • /
    • 2012
  • This is a research of an adaptive longitudinal control system for situated cognition in wide range, traffic accidents reduction and safety driving environment by integrated system which graft a road infrastructure's information based on IT onto the intelligent vehicle combined automobile and IT technology. The road infrastructure installed by laser scanner in intersection, speed limited area and sharp curve area where is many risk of traffic accident. The road infra conducts objects recognition, segmentation, and tracking for determining dangerous situation and communicates real-time information by Ethernet with vehicle. Also, the data which transmitted from infrastructure supports safety driving by integrated with laser scanner's data on vehicle bumper.

A Study on Face Object Detection System using spatial color model (공간적 컬러 모델을 이용한 얼굴 객체 검출 시스템 연구)

  • Baek, Deok-Soo;Byun, Oh-Sung;Baek, Young-Hyun
    • 전자공학회논문지 IE
    • /
    • v.43 no.2
    • /
    • pp.30-38
    • /
    • 2006
  • This paper is used the color space distribution HMMD model presented in MPEG-7 in order to segment and detect the wanted image parts as a real time without the user's manufacturing in the video object segmentation. Here, it is applied the wavelet morphology to remove a small part that is regarded as a noise in image and a part excepting for the face image. Also, it did the optimal composition by the rough set. In this paper, tile proposed video object detection algorithm is confirmed to be superior as detecting the face object exactly than the conventional algorithm by applying those to the different size images.put the of paper here.

A Study on a Feature-based Multiple Objects Tracking System (특징 기반 다중 물체 추적 시스템에 관한 연구)

  • Lee, Sang-Wook;Seol, Sung-Wook;Nam, Ki-Gon;Kwon, Tae-Ha
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.11
    • /
    • pp.95-101
    • /
    • 1999
  • In this paper, we propose an adaptive method of tracking multiple moving objects using contour and features in surrounding conditions. We use an adaptive background model for robust processing in surrounding conditions. Object segmentation model detects pixels thresholded from local difference image between background and current image and extracts connected regions. Data association problem is solved by using feature extraction and object recognition model in searching window. We use Kalman filters for real-time tracking. The results of simulation show that the proposed method is good for tracking multiple moving objects in highway image sequences.

  • PDF

Precise Detection of Car License Plates by Locating Main Characters

  • Lee, Dae-Ho;Choi, Jin-Hyuk
    • Journal of the Optical Society of Korea
    • /
    • v.14 no.4
    • /
    • pp.376-382
    • /
    • 2010
  • We propose a novel method to precisely detect car license plates by locating main characters, which are printed with large font size. The regions of the main characters are directly detected without detecting the plate region boundaries, so that license regions can be detected more precisely than by other existing methods. To generate a binary image, multiple thresholds are applied, and segmented regions are selected from multiple binarized images by a criterion of size and compactness. We do not employ any character matching methods, so that many candidates for main character groups are detected; thus, we use a neural network to reject non-main character groups from the candidates. The relation of the character regions and the intensity statistics are used as the input to the neural network for classification. The detection performance has been investigated on real images captured under various illumination conditions for 1000 vehicles. 980 plates were correctly detected, and almost all non-detected plates were so stained that their characters could not be isolated for character recognition. In addition, the processing time is fast enough for a commercial automatic license plate recognition system. Therefore, the proposed method can be used for recognition systems with high performance and fast processing.

A 3D Modeling System Using Multiple Stereo Cameras (다중 스테레오 카메라를 이용한 3차원 모델링 시스템)

  • Kim, Han-Sung;Sohn, Kwang-Hoon
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.44 no.1
    • /
    • pp.1-9
    • /
    • 2007
  • In this paper, we propose a new 3D modeling and rendering system using multiple stereo cameras. When target objects are captured by cameras, each capturing PC segments the objects and estimates disparity fields, then they transmit the segmented masks, disparity fields, and color textures of objects to a 3D modeling server. The modeling server generates 3D models of the objects from the gathered masks and disparity fields. Finally, the server generates a video at the designated point of view with the 3D model and texture information from cameras.

Design and Implementation of Big Data Platform for Image Processing in Agriculture (농업 이미지 처리를 위한 빅테이터 플랫폼 설계 및 구현)

  • Nguyen, Van-Quyet;Nguyen, Sinh Ngoc;Vu, Duc Tiep;Kim, Kyungbaek
    • Annual Conference of KIPS
    • /
    • 2016.10a
    • /
    • pp.50-53
    • /
    • 2016
  • Image processing techniques play an increasingly important role in many aspects of our daily life. For example, it has been shown to improve agricultural productivity in a number of ways such as plant pest detecting or fruit grading. However, massive quantities of images generated in real-time through multi-devices such as remote sensors during monitoring plant growth lead to the challenges of big data. Meanwhile, most current image processing systems are designed for small-scale and local computation, and they do not scale well to handle big data problems with their large requirements for computational resources and storage. In this paper, we have proposed an IPABigData (Image Processing Algorithm BigData) platform which provides algorithms to support large-scale image processing in agriculture based on Hadoop framework. Hadoop provides a parallel computation model MapReduce and Hadoop distributed file system (HDFS) module. It can also handle parallel pipelines, which are frequently used in image processing. In our experiment, we show that our platform outperforms traditional system in a scenario of image segmentation.

Video Browsing Service Using An Efficient Scene Change Detection (효율적인 장면전환 검출을 이용한 비디오 브라우징 서비스)

  • Seong-Yoon Shin;Yang-Won Rhee
    • Journal of Internet Computing and Services
    • /
    • v.3 no.2
    • /
    • pp.69-77
    • /
    • 2002
  • Recently, Digital video is one of the important information media delivered on the Internet and playing an increasingly important role in multimedia. This paper proposes a Video Browsing Service(VBS) that provides both the video content retrieval and the video browsing by the real-time user interface on Web, For the scene segmentation and key frame extraction of video sequence, we proposes an efficient scene change detection method that combines the RGB color histogram with the $x^2$(Chi Square) histogram. Resulting key frames are linked by both physical and logical indexing, This system involves the video editing and retrieval function of a VCR's, Three elements that are the date, the field and the subject are used for video browsing. A Video Browsing Service is implemented with MySQL, PHP and JMF under Apache Web Server.

  • PDF

Depth-adaptive Sharpness Adjustments for Stereoscopic Perception Improvement and Hardware Implementation

  • Kim, Hak Gu;Kang, Jin Ku;Song, Byung Cheol
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.3 no.3
    • /
    • pp.110-117
    • /
    • 2014
  • This paper reports a depth-adaptive sharpness adjustment algorithm for stereoscopic perception improvement, and presents its field-programmable gate array (FPGA) implementation results. The first step of the proposed algorithm was to estimate the depth information of an input stereo video on a block basis. Second, the objects in the input video were segmented according to their depths. Third, the sharpness of the foreground objects was enhanced and that of the background was maintained or weakened. This paper proposes a new sharpness enhancement algorithm to suppress visually annoying artifacts, such as jagging and halos. The simulation results show that the proposed algorithm can improve stereoscopic perception without intentional depth adjustments. In addition, the hardware architecture of the proposed algorithm was designed and implemented on a general-purpose FPGA board. Real-time processing for full high-definition stereo videos was accomplished using 30,278 look-up tables, 24,553 registers, and 1,794,297 bits of memory at an operating frequency of 200MHz.

Featured-Based Registration of Terrestrial Laser Scans with Minimum Overlap Using Photogrammetric Data

  • Renaudin, Erwan;Habib, Ayman;Kersting, Ana Paula
    • ETRI Journal
    • /
    • v.33 no.4
    • /
    • pp.517-527
    • /
    • 2011
  • Currently, there is a considerable interest in 3D object reconstruction using terrestrial laser scanner (TLS) systems due to their ability to automatically generate a considerable amount of points in a very short time. To fully map an object, multiple scans are captured. The different scans need to be registered with the help of the point cloud in the overlap regions. To guarantee reliable registration, the scans should have large overlap ratio with good geometry for the estimation of the transformation parameters among these scans. The objective of this paper is to propose a registration method that relaxes/eliminates the overlap requirement through the utilization of photogrammetrically reconstructed features. More specifically, a point-based procedure, which utilizes non-conjugate points along corresponding linear features from photogrammetric and TLS data, will be used for the registration. The non-correspondence of the selected points along the linear features is compensated for by artificially modifying their weight matrices. The paper presents experimental results from simulated and real datasets to illustrate the feasibility of the proposed procedure.

Design and Implementation of a Latency Efficient Encoder for LTE Systems

  • Hwang, Soo-Yun;Kim, Dae-Ho;Jhang, Kyoung-Son
    • ETRI Journal
    • /
    • v.32 no.4
    • /
    • pp.493-502
    • /
    • 2010
  • The operation time of an encoder is one of the critical implementation issues for satisfying the timing requirements of Long Term Evolution (LTE) systems because the encoder is based on binary operations. In this paper, we propose a design and implementation of a latency efficient encoder for LTE systems. By virtue of 8-bit parallel processing of the cyclic redundancy checking attachment, code block (CB) segmentation, and a parallel processor, we are able to construct engines for turbo codings and rate matchings of each CB in a parallel fashion. Experimental results illustrate that although the total area and clock period of the proposed scheme are 19% and 6% larger than those of a conventional method based on a serial scheme, respectively, our parallel structure decreases the latency by about 32% to 65% compared with a serial structure. In particular, our approach is more latency efficient when the encoder processes a number of CBs. In addition, we apply the proposed scheme to a real system based on LTE, so that the timing requirement for ACK/NACK transmission is met by employing the encoder based on the parallel structure.