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Abstract: This paper reports a depth-adaptive sharpness adjustment algorithm for stereoscopic 
perception improvement, and presents its field-programmable gate array (FPGA) implementation 
results. The first step of the proposed algorithm was to estimate the depth information of an input 
stereo video on a block basis. Second, the objects in the input video were segmented according to 
their depths. Third, the sharpness of the foreground objects was enhanced and that of the 
background was maintained or weakened. This paper proposes a new sharpness enhancement 
algorithm to suppress visually annoying artifacts, such as jagging and halos. The simulation results 
show that the proposed algorithm can improve stereoscopic perception without intentional depth 
adjustments. In addition, the hardware architecture of the proposed algorithm was designed and 
implemented on a general-purpose FPGA board. Real-time processing for full high-definition 
stereo videos was accomplished using 30,278 look-up tables, 24,553 registers, and1,794,297 bits of 
memory at an operating frequency of 200MHz.    
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1. Introduction 

As three-dimensional (3D) consumer electronics 
products, such as 3DTV, 3D monitors and 3D smart 
phones, have become increasingly popular, along with the 
success of 3D movies, more interest has been attracted to 
3D image processing. Stereoscopic 3DTV can provide 
viewers with the impression of depth and a greater sense of 
presence [1]. The main depth cue used by the human visual 
system comes from the horizontal differences (parallax) 
between the two ocular viewpoints. To control 
stereoscopic perception in a 3D display, it is important to 
properly adjust the depth, or parallax. Many depth 
adjustment algorithms have been developed [2-8]. For 
example, some researchers, such as Kim and Sohn [2], 
proposed controlling the depth information based on visual 
fatigue [2-6]. Fig. 1 describes the general depth adjustment 
algorithm. First, the pixel distance between the left-eye 
view frame (LVF) and right-eye view frame (RVF) (i.e., 
disparity) was estimated. Note that the disparity actually 
corresponds to depth information. Second, the appropriate 
depth was selected by considering the visual fatigue level, 
or the stereoscopic perception. Third, the pixels in the LVF 

or RVF were moved according to the adjusted depth. In 
this step, so-called holes can occur around the shifted 
pixels. Finally, these holes were filled using appropriate 
interpolation methods [9]. 

The main drawback of such a simple parallax shifting 
method is that it can create losses in the image area due to 
unavoidable cropping at the screen edges that occurs when 
eliminating the unpaired points. In addition, all of these 
hole-filling techniques can lead to a range of distortions, 
which may be noticeable and visually annoying. In 
particular, artificially growing the depth may increase the 
visual fatigue level. 

This paper presents a sharpness adjustment algorithm 
for artifact-free stereoscopic perception improvement 
without a deliberate depth adjustment for objects in a 3D 
video sequences. First, the disparity for each LVF/RVF 
pair was estimated on a block basis. Second, object 
segmentation was performed according to the disparity, so 
that the foreground and background objects were 
discriminated. Finally, the sharpness of the foreground 
object was enhanced, and that of the background objects 
was maintained or lessened. For this step, a new sharpness 
enhancement algorithm was presented that mitigates 
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jagging and halo artifacts. The experiment results showed 
that the proposed algorithm enhances depth perception 
without any visual fatigue caused by an artificial depth 
adjustment. In addition, the hardware architecture was 
designed for the proposed algorithm, and the results of its 
implementation are discussed. The proposed algorithm was 
created successfully on a dedicated 200MHz field-
programmable gate array (FPGA) board operated in real 
time using the following resources: 30,278 look-up tables 
(LUTs), 24,553 registers, and 1,794,297 bits of memory. 
The implemented hardware will soon be applied to a 
specific 3D monitor product model. 

The remainder of this paper is organized as follows: 
Section 2 describes the proposed algorithm. Section 3 
reports the simulation results. Section 4 summarizes the 
very large scale implementation results, and Section 5 
reports the conclusions. 

2. The Proposed Algorithm 

Fig. 2 presents the overall flow of the proposed 
algorithm. The main contribution points of the proposed 
algorithm are simple foreground extraction and edge-
preserving sharpness enhancement. The following 
subsections depict each step of the proposed algorithm in 
detail. 

2.1 Disparity Estimation 
For several decades, many disparity estimation 

algorithms for stereo images have been developed [10-14]. 
To enable real-time hardware implementation, this paper 
adopts a typical block-matching-based disparity estimation 
algorithm because of its low computational complexity. 
Note that block matching is performed only in the 
horizontal direction because it is assumed that the input 
stereo frames are already rectified. The matching block 
size was set to 16×16, and the searched disparity vector 
(DV) was assigned to the central 8×8 of the matching 
block via proper overlapping with its neighboring 

matching blocks. A typical three-step hierarchical search 
was used for further computational reduction. Levels 2, 1 
and 0 represent the coarsest, middle, and finest resolutions, 
respectively. Prior to the search, the frames at the middle 
and coarsest resolutions, i.e., levels 1 and 2 (named 

(1)I and (2)I , respectively) are produced by down-
sampling the original frame by 1/2 and 1/4, respectively, in 
both directions. First, a level 2 search is performed on the 
8×8 block. The best DV at level 2 ( (2)d̂ ) is obtained by 
minimizing the sum of absolute differences (SAD) as 
follows:  
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where (2)

LI  and (2)
RI  represent the LVF and RVF, 

respectively, at level 2, and (i, j) denotes the coordinate of 
the upper-left corner pixel in matching block (2)W . The 
search range at level 2, (2)Ω  is set to [-32, 32]. Similarly, 
the search at level 1 is performed for a local search area 
with the center being 2x (2)d̂ , and the best DV at level 
1, (1)d̂ , is found. The matching block size at level 1 is 8×8, 
and (1)Ω  is set to [-1, +1]. Finally, the search at level 0 is 
performed for a local search area (0)Ω  with the center 
being 2× (1)d̂ , and the best DV d̂ , (0)d̂ , is found. The 
matching block size is 16×16, and (0)Ω  is set to [-1, +1]. 

After obtaining the DV for each block, the so-called bi-
directional check [15] is performed to investigate the 
accuracy of block matching. That is, if the target block in 
the LVF is matched to a particular block in the RVF with 
the corresponding DV d̂ , the best DV of the matched 
block in the RVF is explored in a given search area in the 
LVF. If such a reverse DV estimation is accomplished, 
whether or not the reverse DV is - d̂  can be determined. If 
it is, d̂  is determined to be reliable. Otherwise, the DV of 
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Fig. 1. General depth adjustment method for
stereoscopic video sequences. 
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Fig. 2. Overall flow of the proposed algorithm. 
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the target block is replaced with the median of the DVs of 
the neighbor blocks because d̂  may be unreliable. In 
addition, a morphological closing operation and median 
filtering is applied to the derived DV map on a 3×3 block 
basis. In this manner, a block-based disparity map is 
obtained. 

2.2 Disparity-based Foreground 
Segmentation 

The second step in the proposed algorithm is to extract 
the dominant foreground object(s) using the DV histogram. 
Fig. 3 illustrates the extraction process from a typical DV 
histogram. One feature of the DV histogram is that the 
DVs of a foreground object are generally located on the 
right side of the DV histogram; those of the background 
object are located on the left side. Another feature of the 
DV histogram is that the DVs of the background object(s) 
tend to be similar and gathered together. Based on these 
two features, an object segmentation is performed on the 
DV histogram. First, the start point and end point having 
meaningful non-zero bin-values ( Sd  and Ed ) are found on 
the DV histogram, as shown Fig. 3(a). For example, Sd , 
which meets the following condition (2), is found, 
searching from the left using: 
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where ( )H t denotes a histogram bin-value of disparity t 
and the threshold θ is fixed empirically to 3% of the total 
sum of disparity bin-values. Similarly, Ed , which meets 
the similar condition, is found starting from the right, 
respectively. If Sd  and Ed  are determined, then the 
foreground and background are extracted. [ Sd , Ed ] are 
divided empirically into two clusters in terms of the L1-
norm distance at a ratio of 4:6. The left group and right 
group are initially regarded as the background and 
foreground, respectively. Each peak, Fp  and Bp , is found 
in each group for more precise foreground and background 
segmentation. Fp  and Bp  are the peaks in the foreground 
group and background group, respectively. After finding 
the two peaks, the new determination value, δ , is updated, 
as shown Fig. 3(b). Finally, a labeling operation is applied 
to only the foreground pixels. A well-known connected-
component labeling algorithm is adopted [16]. After 
labeling, several foreground objects can be produced. In 
this paper, the largest object was adopted as the most 
dominant foreground object. 

2.3 Object-based Sharpness 
Enhancement 

The last step of the proposed algorithm is to enhance 
the sharpness of only the selected foreground object. In 
this study, the remaining regions in the frame were 
maintained without processing. Note that a typical 
sharpness enhancement algorithm may cause unwanted 
artifacts, such as jagging, the halo effect, and noise 
boosting. Polesel et al. employed an adaptive filter that 
controls the sharpness in such a way that contrast 
enhancement occurs in high-detail areas with little or no 
image sharpening occurring in the smooth areas [17]. The 
adaptive filter emphasizes the medium-contrast details in 
the input image more than the large-contrast details, such 
as abrupt edges, to avoid overshoot effects in the output 
image. Therefore, the adaptive unsharp masking (AUM) 
method first divides each input image into three regions: 
smooth, medium-contrast, and high-contrast regions. The 
adaptive filter does not perform a sharpening operation in 
smooth areas. Therefore, the overall system is more robust 
to the presence of noise in the input images than the 
traditional approaches. In addition, the local dynamics in 
the high-contrast areas are already high, and such regions 
require only moderate sharpening. The medium-activity 
areas require the most enhancements. Based on this, the 
AUM applies strong sharpening to the medium-contrast 
regions, whereas moderate weak sharpening is applied to 
the high-contrast regions. In this manner, the AUM 
accomplishes the dual objectives of avoiding noise 
amplification and excessive overshoot in the detail areas. 
According to the experimental results in Section 3, the 
AUM algorithm does not resolve jagging or halo artifacts. 

This paper proposes a sharpness enhancement 
algorithm that provides less computational complexity and 
fewer artifacts than the AUM algorithm. Fig. 4 describes 
the proposed algorithm. In this figure, ( , )x m n  and 
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Fig. 3. DV histogram-based object segmentation (a) the
start and end points, (b) threshold determination
between the object and background. 
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( , )y m n  indicate a pixel located at (m,n) in the LVF or 
RVF input, respectively, and the processed output. Like 
the AUM, the proposed algorithm consists of two parts: 
pixel-wise weight computation and sharpness enhancement. 
The details are described in the following subsection. 

2.3.1 Weight Computation according to Edge 
level 

For convenience, only the weight computation process 
for the horizontal direction is discussed. First, a typical 
low-pass filter (LPF) and high-pass filter (HPF) are 
applied sequentially to ( , )x m n . Second, the horizontal 
edge level of the processed pixel, i.e., ( , )h m nε , is 
computed, where the Sobel edge operator is used and the 
horizontal edge level means the absolute value of the 
magnitude of the horizontal edge obtained by Sobel 
operator on the horizontal direction. Finally, the horizontal 
weight hλ  is determined adaptively according to the edge 
level, ( , )h m nε , as shown in Fig. 5. In the case of a weak 
edge area, when 1( , )h m n Tε < , hλ  is set to 0, because it 
requires only a slight sharpening effect. For a medium-
activity area, which mostly affects the human visual 
system, where 1 2( , )hT m n Tε <≤ , hλ  is set to 1. 
Furthermore, hλ decreases with increasing ( , )h m nε . In this 
study, hλ  was determined for the five intervals of ( , )h m nε . 
For extremely high activity areas, when 4( , )h m n Tε ≥ , 

hλ was fixed at 0 to avoid the overshoot artifacts. The 
weights and thresholds were determined empirically 
according to intensive experiments for various stereo video 
sequences. As a result, in this study, T1, T2, T3, and T4 were 
set to 20, 40, 70, and 100, respectively. 

2.3.2 Sharpness Enhancement 
After the horizontal and vertical weights, i.e., hλ and 

vλ , are obtained, the sharpness enhancement using these 
weights is applied to ( , )x m n , as shown in the upper part 
of Fig. 4. To mitigate the halo or jagging artifacts, this 
paper proposes the use of an edge-preserving LPF. As seen 
in Fig. 4, the sharpness enhancement was performed using 
one-dimensional processing to enable simple hardware 
implementation. Fig. 6 illustrates the basic concept of the 
proposed edge-preserving LPF. The LPF coefficients for 
the five rows in the 5×5 filtering processing block were 
determined adaptively. The proper weights 

2 1 0 1 2{ , , , , }α α α α α- -  are multiplied into a typical 5-tap 
Gaussian LPF, i.e., {0.1, 0.2, 0.4, 0.2, 0.1}. The weights 
were computed according to: 
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In (3), the threshold TS was set to 60. In other words, a 

pixel that was significantly different from the current pixel 
( , )x m n was excluded from the computation. Note that 

proper normalization follows. Using the computed LPF 
coefficients, ( , )x m n was low-pass-filtered. The edge-
preserving HPF was then accomplished by subtracting the 
low-pass-filtered ( , )x m n  from the original ( , )x m n . The 
proposed HPF provided clearer edges than the typical HPF. 
As a result, the halo effect around the strong edges was 
avoided. hλ was then multiplied with the horizontally HPF-
ed output, and vλ was similarly multiplied with the 
vertically HPF-ed output. Finally, ( , )y m n was obtained by 
adding the results to ( , )x m n . 

3. Performance Evaluation 

Four Middlebury stereo images were used to evaluate 
the performance of the proposed algorithm; Reindeer, 
Cones, Dwarves, and Art. The frame size of all of the test 
sequences was 1920×1080. The frame format was side-by-
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side. Therefore, in the case of the left–right (L/R) side-by-
side format, the frame size of the LVF/RVF was 960×1080, 
and in the case of the top–bottom (T/B) side-by-side 
format, the frame size of the LVF/RVF was 1920×540. 

Fig. 7 shows the foreground extraction result for the 
Reindeer image in T/B format. To avoid visually annoying 
artifacts around the object boundary when enhancing the 
sharpness, an 8-pixel exterior band around the boundary of 
the foreground object was also assigned to the foreground 
object.  

For the comparisons, the AUM and generalized 
unsharp masking algorithm (GUM) were employed [19]. 
Segments of the results are displayed in Fig. 8. The AUM 
results suffered from jagging artifacts around the strong 

edges (see Fig. 8(b)). In addition, the GUM results 
provided weak sharpness on the bright intensity range in 
Fig. 8(d). In contrast, the proposed algorithm mitigated 
these jagging artifacts while maintaining the sharpness 
around the edges, as shown in Fig. 8(c). Fig. 9 presents 
another result. The halo effect can be seen around the 
patterns in Fig. 9(b) and jagging artifacts can be observed 
around the diagonal edges. The GUM and proposed 
algorithm significantly suppressed such phenomena while 
enhancing the sharpness, but GUM boosted the noise at the 
flat areas as shown Fig. 9(d). 

Figs. 10 and 11 compare the final outputs from the 

(a) 
 

(b) 

Fig. 7. Segmentation of foreground areas for Reindeer
(a) the input LVF/RVF, (b) the output LVF/RVF. 

 

 
                            (a)                             (b) 

 

 
                           (c)                              (d) 

Fig. 8. Sharpness enhancement results for Dwarves (a) 
original, (b) AUM algorithm, (c) proposed algorithm, (d) 
result of GUM [19]. Here a specific part of the image is
cropped. 

 

 
                             (a)                             (b) 

 

 
(c) (d) 

Fig. 9. Sharpness enhancement results for Dwarves (a) 
original, (b) the algorithm, (c) proposed algorithm, (d) 
result of GUM [19]. Here a specific part of the image is 
cropped. 

 

 
                        (a)                                         (b) 

Fig. 10.Example of the proposed algorithm results for 
Dwarves (a) the input stereo image, (b) output stereo 
image. 

 

 
                        (a)                                         (b) 

Fig. 11. Example of the proposed algorithm results for 
Art (a) input stereo image, (b) output stereo image. 
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Dwarves and Art images in the anaglyph, respectively. The 
foreground objects (e.g., the dwarves and the plaster cast) 
were sharpened except for background wallpaper. On a 
typical 3D monitor, the stereo video sequences 
manipulated by the proposed algorithm were found to 
provide better depth perception than the original video 
sequences, and reduced visual fatigue. To apply the 
proposed algorithm to a particular 3D monitor, it was 
implemented on an FPGA platform, which will be 
described in the following section. 

For comparison in terms of the objective visual quality, 
an image quality assessment metric for an objective 
evaluation of the sharpness enhancement: multi-scale 
structural similarity (MSSSIM) can be employed [18]. 

Table 1 lists the MSSSIM values for various algorithms. 
Noteworthy is that the closer the MSSSIM is to 1, the 
closer the sharpness of the test image to that of the original. 
As shown in Table 1, the proposed algorithm provides 
higher MSSIM values than the AUM and GUM on average. 

4. Hardware Implementation 

4.1 Architecture Design 
The target video has a resolution of 1920x1080 and a 

frame rate of 60Hz. A careful design is needed to process, 
such a full high-definition stereo video in real time. Dual 
buffering of the frame units, parallel connection of the 
random access memory (RAM) in the FPGA, and 
pipelining modules were all applied in the hardware design 
for real-time operation.  

The hardware was designed to operate at 200 MHz for 
real-time operation on a dedicated FPGA board. For the 
200MHz operation, the clock cycles required for the one 
matching block (MB) calculation were determined by: 
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Therefore, approximately 49,440 clock cycles are 

required for a one slice calculation because there are 60 
MBs in a single slice. In the disparity estimation at level 2, 
which has the heaviest calculation load, the number of 
pixels to be read was 640 (8×8 pixels from the right side, 

72×8 pixels from the left side). If one pixel is read in each 
clock cycle, 640 clock cycles are required, which is more 
than the allocated cycles (412 cycles) in a single MB 
calculation for 200MHz operation. Because 1,300 cycles 
are needed to handle one MB, and one slice has 60 MBs, a 
total of 78,000 clock cycles will be needed without 
pipelining for a single slice-disparity estimation, which is 
also more than the 49,440 cycles allowed by the 200MHz 
operation. To reduce the number of required clock cycles 
to conform 200MHz operation, 16 parallel pixels were first 
read together from the line buffers in a single cycle. 
Therefore, the clock cycles for reading the data from both 
sides of the line buffers for the level 2 disparity estimation 
were reduced by 36 cycles from the 640 cycles. 
Furthermore, by pipelining the disparity estimation process, 
the clock cycles for a single slice calculation are reduced 
by 5,300 from 78,000 cycles. The number of clock cycles 
required for the later processes, such as filtering, histogram 
building, and labeling, was approximately 3,740 cycles. 
Approximately 20,000 clock cycles were consumed while 
waiting to fill the line buffers. Therefore, the total number 
of cycles used in this implementation was approximately 
29,040, which is less than the 49,440 cycles available for 
the 200MHz operation.  

Fig. 12 presents a block diagram of the hardware 
implementation for the algorithm. The hardware consists 
of 13 modules. A 1GB module of DDR2-800 SO-DIMM 
RAM is used as the external RAM, which is controlled by 
the high-performance memory controller embedded in the 
FPGA. The pixel data, converted from red-green-blue 
(RGB) 4:4:4 to luminance-bandwidth-chrominance (YUV) 
4:4:4, is read in real time at 60Hz. The line buffer stores 
the left and right side pixel data slices for the search 
operation. One slice consists of 32 horizontal lines, but 
only 16 lines are stored in the line buffer because there is 
no disparity estimation in level 0. 

When both line buffers are full, the disparity estimation 

Table 1. Comparison results for various test images 
based on MSSSIM. 

Images AUM GUM Proposed 
Reindeer 0.9854 0.8951 0.9865 

Cones 0.9809 0.9633 0.9873 
Dwarves 0.9920 0.9485 0.9922 

Art 0.9865 0.7064 0.9874 
Average 0.9862 0.8783 0.9884 

 

 

Fig. 12. Hardware block diagram. 
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block begins to calculate the DV values. The core block 
extracts the foreground region using the proposed 
algorithm. The foreground region information is stored in 
internal RAM. The stored data is then read out from RAM, 
and the sharpening is processed. 

For the RVF data, the stored foreground region 
determines whether to proceed with the sharpening. 
Because there is only a position difference between the 
LVF and RVF data, the shifted foreground region can be 
used for LVF sharpening. Therefore, the foreground 
extraction for the LVF can be omitted. 

If the data is determined to be a foreground, the 
luminance (Y) data from the sharpening filter and the 
chroma (UV) data from external RAM are combined for 
the final YUV data. If the data is determined to be the 
background, the UV data and Y data without sharpening 
are combined for the final YUV data. The final YUV data 
are converted back to RGB for an enhanced 3D data 
display. 

4.2 FPGA Implementation 
The proposed hardware architecture was coded in 

Verilog HDL and implemented with a dedicated FPGA. 
The implementation was verified using RTL simulations. 
The HDL model was synthesized on the FPGA device. Fig. 
13 shows a simulation waveform of the process used to 
calculate the DV of a MB, as an example of the 
implementation. The waveform shows the internal signals 
of the FPGA operating at 200MHz. This also shows that a 
total of 88 clock cycles are needed for one MB disparity 
estimation. Therefore, a total of 5,280 clock cycles were 
required for the 60 MBs disparity estimation process. This 
is similar to the estimated cycles (5,300 cycles) described 
in Section 4.1. 

Table 2 lists the synthesis results. This shows that 
30,278 LUTs, 24,553 registers, and 1,794,297 bits of 

memory were used. For the real time processing of the 
algorithm for a 1080p 3D display, the core block was 
designed to operate at 200MHz. The maximum operating 
frequency was measured at 213.36MHz. The other blocks, 
such as the display control and the RGB to YUV 
conversion, were set to 148.35MHz for the connected 
displays.  

As shown in Fig. 14, the functionality of the proposed 
algorithm was verified using a typical 3D image with the 
algorithm implemented on the FPGA board. 

5. Conclusions 

This paper proposed a sharpness adjustment algorithm 
that provides artifact-free stereoscopic perception 
improvement for 3D video sequences. The proposed 
algorithm was shown empirically to improve stereoscopic 
perception without visual fatigue because there is no 
intentional disparity adjustment for objects. In addition, the 
hardware architecture of the proposed algorithm was 
designed, and the real-time processing for full HD stereo 
videos was demonstrated on a general-purpose FPGA 
development board with an operating frequency of 
200MHz, using 30,278 look-up-tables, 24,553 registers, 
and 1,794,297 bits of memory. As a result, the proposed 
framework can be a possible solution for artifact-free 
stereoscopic perception improvement for 3D applications. 
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