• Title/Summary/Keyword: Real-time Response

Search Result 1,635, Processing Time 0.042 seconds

Effects of interface delay in real-time dynamic substructuring tests on a cable for cable-stayed bridge

  • Marsico, Maria Rosaria
    • Smart Structures and Systems
    • /
    • v.14 no.6
    • /
    • pp.1173-1196
    • /
    • 2014
  • Real-time dynamic substructuring tests have been conducted on a cable-deck system. The cable is representative of a full scale cable for a cable-stayed bridge and it interacts with a deck, numerically modelled as a single-degree-of-freedom system. The purpose of exciting the inclined cable at the bottom is to identify its nonlinear dynamics and to mark the stability boundary of the semi-trivial solution. The latter physically corresponds to the point at which the cable starts to have an out-of-plane response when both input and previous response were in-plane. The numerical and the physical parts of the system interact through a transfer system, which is an actuator, and the input signal generated by the numerical model is assumed to interact instantaneously with the system. However, only an ideal system manifests a perfect correspondence between the desired signal and the applied signal. In fact, the transfer system introduces into the desired input signal a delay, which considerably affects the feedback force that, in turn, is processed to generate a new input. The effectiveness of the control algorithm is measured by using the synchronization technique, while the online adaptive forward prediction algorithm is used to compensate for the delay error, which is present in the performed tests. The response of the cable interacting with the deck has been experimentally observed, both in the presence of delay and when delay is compensated for, and it has been compared with the analytical model. The effects of the interface delay in real-time dynamic substructuring tests conducted on the cable-deck system are extensively discussed.

Two-Stage Estimator Design Using Stable Recursive FIR Filter and Smoother

  • Kim, Jong-Ju;Kim, Jae-Hun;Lyou, Joon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2532-2537
    • /
    • 2005
  • FIR(Finite Impulse Response) filter is well known to be ideal for the finite time state-space model, but it requires much computation due to its inherent non-recursive structure especially when the measurement interval grows to a large extent. And often a fixed-lag smoother based on the finite time interval is needed to monitor the soundness of the system model and the measurement model, but the computation burden of FIR-type smoother imposes much restriction of its usage for real-time application. Conventional recursive forms of FIR estimator[1]-[4] could not be used for real time applications, since they are numerically unstable in their recursive equations. To cope with this problem, we suggest a stable recursive form FIR estimator(SRFIR) and its usefulness is demonstrated for designing the real-time fixed-lag smoother on the finite time window through an example of detection of rate bias in the anti-aircraft gun fire control system.

  • PDF

Implementation of Real-Time Communication in CAN for a Humanoid Robot (CAN 기반 휴머노이드 로봇의 실시간 데이터 통신 구현)

  • Kwon Sun-Ku;Kim Byung-Yoon;Kim Jin-Hwan;Huh Uk-Youl
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.55 no.1
    • /
    • pp.24-30
    • /
    • 2006
  • The Controller Area Network (CAN) is being widely used for real-time control application and small-scale distributed computer controller systems. When the stuff bits are generated by bit-stuffing mechanism in the CAN network, it causes jitter including variations in response time and delay In order to eliminate this jitter, stuff bits must be controlled to minimize the response time and to reduce the variation of data transmission time. This paper proposes the method to reduce the stuff bits by restriction of available identifier and bit mask using exclusive OR operation. This da manipulation method are pretty useful to the real-time control strategy with respect to performance. However, the CAN may exhibit unfair behavior under heavy traffic conditions. When there are both high and low priority messages ready for transmission, the proposed precedence priority filtering method allows one low priority message to be exchanged between any two adjacent higher priority messages. In this way, the length of each transmission delays is upper bounded. These procedures are implemented as local controllers for the ISHURO(Inha Semvung Humanoid Robot).

Response Time Prediction of IoT Service Based on Time Similarity

  • Yang, Huaizhou;Zhang, Li
    • Journal of Computing Science and Engineering
    • /
    • v.11 no.3
    • /
    • pp.100-108
    • /
    • 2017
  • In the field of Internet of Things (IoT), smarter embedded devices offer functions via web services. The Quality-of-Service (QoS) prediction is a key measure that guarantees successful IoT service applications. In this study, a collaborative filtering method is presented for predicting response time of IoT service due to time-awareness characteristics of IoT. First, a calculation method of service response time similarity between different users is proposed. Then, to improve prediction accuracy, initial similarity values are adjusted and similar neighbors are selected by a similarity threshold. Finally, via a densified user-item matrix, service response time is predicted by collaborative filtering for current active users. The presented method is validated by experiments on a real web service QoS dataset. Experimental results indicate that better prediction accuracy can be achieved with the presented method.

Real Time Modeling of Discrete Event Systems and Its Application (이산사건 시스템의 실시간 모델링 및 응용)

  • Jeong, Yong-Man;Hwang, Hyung-Soo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.8 no.6
    • /
    • pp.91-98
    • /
    • 1998
  • A DEDS is a system whose stated change in response to the occurrence of events from a predefined event set. A major difficulty in developing analytical results for the system is the lack of appropriate modeling techniques. In this paper, we consider the modeling and control problem for Discrete Event Dynamic Systems(DEDS) in the Temporal Logic framework(TLF) which have been recently defined. The traditional TLF is enhanced with time functions for real time control of Discrete Event Dynamic Systems. A sequence of event which drive the system from a given initial state to a given final state is generated by pertinently operating the given plants. This paper proposes the use of Real-time Temporal Logic as a modeling tool for the analysis and control of DEDS. An given example of fixed-time traffic control problem is shown to illustrate our results with Real-time Temporal Logic Framework.

  • PDF

Modeling and Control of Fixed-time Traffic Control Problem with Real-time Temporal Logic Frameworks (실시간 시간논리구조를 이용한 고정시간 교통제어 문제의 모델링 및 제어)

  • Jeong, Yong-Man;Lee, Won-Hyok;Choi, Jeong-Nae;Hwang, Hyung-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.109-112
    • /
    • 1997
  • A Discrete Event Dynamic System is a system whose states change in response to the occurrence of events from a predefined event set. A major difficulty in developing analytical results for the systems is the lack of appropriate modeling techniques. This paper proposes the use of Real-time Temporal Logic as a modeling tool for the modeling and control of fixed-time traffic control problem which by way of a DEDS. The Real-time Temporal Logic Frameworks is extended with a suitable structure of modeling hard real-time constraints. Modeling rules are developed for several specific situations. It is shown how the graphical model can be translated to a system of linear equations and constraints.

  • PDF

Implementation and Performance analysis of a Framework to Support Real-Time of Robot Components (로봇 컴포넌트에 실시간성을 지원하기 위한 프레임워크 구현 및 성능분석)

  • Choi, Chan-Woo;Cho, Moon-Haeng;Park, Seong-Jong;Lee, Cheol-Hoon
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.4
    • /
    • pp.81-94
    • /
    • 2009
  • In ubiquitous environments, the real-time features are necessary to insure the QoS of the intelligent service robots. In this paper, we design and implement a real-time framework for intelligent service robots to support real-time features. The real-time framework to support real-time scheduling services is implemented on the general operating systems. We solve the problem that the scheduler of a general operating system can not support real-time features. This paper also proposes realtime scheduling services to guarantee the QoS of real-time robot applications. We implemented the proposed real-time framework on the Windows operating system and conducted some performance experiments. The experimental results show that the proposed real-time framework can improve thread response times and it has slight performance overhead of $62{\mu}s$.

Tracking Position Control of DC Servo Motor in LonWorks/IP Network

  • Song, Ki-Won;Choi, Gi-Sang;Choi, Gi-Heung
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.2
    • /
    • pp.186-193
    • /
    • 2008
  • The Internet's low cost and ubiquity present an attractive option for real-time distributed control of processes on the factory floor. When integrated with the Internet, the LonWorks open control network can give ubiquitous accessibility with the distributed control nature of information on the factory floor. One of the most important points in real-time distributed control of processes is timely response. There are many processes on the factory floor that require timely response. However, the uncertain time delay inherent in the network makes it difficult to guarantee timely response in many cases. Especially, the transmission characteristics of the LonWorks/IP network show a highly stochastic nature. Therefore, the time delay problem has to be resolved to achieve high performance and quality of the real-time distributed control of the process in the LonWorks/IP Virtual Device Network (VDN). It should be properly predicted and compensated. In this paper, a new distributed control scheme that can compensate for the effects of the time delay in the network is proposed. It is based on the PID controller augmented with the Smith predictor and disturbance observer. Designing methods for output feedback filter and disturbance observer are also proposed. Tracking position control experiment of a geared DC Servo motor is performed using the proposed control method. The performance of the proposed controller is compared with that of the Internal Model Controller (IMC) with the Smith predictor. The result shows that the performance is improved and guaranteed by augmenting a PID controller with both the Smith predictor and disturbance observer under the stochastic time delay in the LonWorks/IP VDN.

A hybrid prioritized worker model for efficiency of shared resources in the real-time system (실시간 시스템에서 공유자원의 효율적 사용을 위한 혼합형 우선순위 작업자 모델)

  • Park, Hong-Jin;Chun, Kyung-Ah;Kim, Chang-Min
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.12
    • /
    • pp.3652-3661
    • /
    • 1999
  • To support multimedia applications such as a multimedia communication systems and multimedia broadcasting, an operating system need to predict their timing-constraints. So, In this real-time systems, we must solve the priority inversion problem that may make the behavior of unpredictable systems and need a real-time server model that provides a better preemptability and minimizes a system overhead. In current real-time systems, the single thread server model, the worker model and the dynamic server model are being used for synchronization but they cannot propose an effective structure for managing shared resources. In this paper, the priority inheritance protocol is used to solve the priority inversion problem and the hybrid prioritized worker model is proposed, which can provide a more effective structure and a faster response time minimizing a system overhead. The hybrid prioritized worker model is to combine the static and the dynamic prioritized worker model, and have a better performance than other models in response time which is an important factor in a real-time system.

  • PDF

A real-time unmeasured dynamic response prediction for nuclear facility pressure pipeline system

  • Seungin Oh ;Hyunwoo Baek ;Kang-Heon Lee ;Dae-Sic Jang;Jihyun Jun ;Jin-Gyun Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.7
    • /
    • pp.2642-2649
    • /
    • 2023
  • A real-time unmeasured dynamic response prediction process for the nuclear power plant pressure pipeline is proposed and its performance is tested in the test-loop system (KAERI). The aim of the process is to predict unmeasurable or unreachable dynamic responses such as acceleration, velocity, and displacement by using a limited amount of directly measured physical responses. It is achieved by combining a well-constructed finite element model and robust inverse force identification algorithm. The pressure pipeline system is described by using the displacement-pressure vibro-acoustic formulation to consider fully filled liquid effect inside the pipeline structure. A robust multiphysics modal projection technique is employed for the real-time sensor synchronized prediction. The inverse force identification method is also derived and employed by using Bathe's time integration method to identify the full-field responses of the target system from the modal domain computation. To validate the performance of the proposed process, an experimental test is extensively performed on the nuclear power plant pressure pipeline test-loop under operation conditions. The results show that the proposed identification process could well estimate the unmeasured acceleration in both frequency and time domain faster than 32,768 samples per sec.