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Abstract
In the field of Internet of Things (IoT), smarter embedded devices offer functions via web services. The Quality-of-Ser-

vice (QoS) prediction is a key measure that guarantees successful IoT service applications. In this study, a collaborative

filtering method is presented for predicting response time of IoT service due to time-awareness characteristics of IoT.

First, a calculation method of service response time similarity between different users is proposed. Then, to improve pre-

diction accuracy, initial similarity values are adjusted and similar neighbors are selected by a similarity threshold.

Finally, via a densified user-item matrix, service response time is predicted by collaborative filtering for current active

users. The presented method is validated by experiments on a real web service QoS dataset. Experimental results indicate

that better prediction accuracy can be achieved with the presented method.

Category: Ubiquitous computing
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I. INTRODUCTION

With implementation and development of the Internet

of Things (IoT), more IoT functions are provided via web

services. This technology trend is mainly demonstrated in

two aspects. First, in IoT environment, various embedded

devices are deployed, forming IoT smart objects [1]. These

smart objects have capability of data preprocessing, data

storage, collaborative communication and context awareness.

To shield complexity of knowledge representation and

communication interface, web service standards are

implemented on relatively resource-constrained devices

by simplification and optimization. For example, device

profiles for web services (DPWS) [2], as a subset of web

service standards, is implemented in many embedded

devices for seamless service interaction. Second, in the

aspect of IoT infrastructure, Service-Oriented-Architecture

(SOA) is widely accepted as IoT middleware solutions to

solve issues of abstracting device functionalities and

communication capabilities [3, 4]. Based on SOA, different

IoT functions derived from smart objects, software entities

and networks may be uniformly represented as web

services, and new IoT applications may be constructed

rapidly by service composition. The borderline between

real and virtual world is blurred.

Extensive use of web services makes IoT QoS manage-

ment extremely crucial that is the basic guarantee of

successful service discovery, query, selection and on-

demand provision. However, obtaining values of user-

dependent QoS properties (e.g., response time and failure

rate) is difficult, since these property values are different

for different users and change dynamically in the real

word. It is not an effective method to evaluate IoT services

via real-word service invocations because this process is

resource and time-consuming. Especially, when there are

too many services in an IoT system, service users cannot

select all suitable services for evaluation by direct service

invocations. QoS prediction is propitious to solve these
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issues above mentioned. Via QoS prediction results, a

service user may select QoS-satisfied and optimal services

before real service invocations, and meanwhile, the IoT

system can actively recommend suitable services for

current users according to their characteristics.

Various methods have been applied to predict QoS for

service users. In a study of [5], runtime QoS of composite

service is predicted by an autoregressive moving average

model and QoS reduction rules. A similar study is conducted

by [6]. They predict dynamic QoS of composite service

by a probabilistic model and graph reduction algorithm.

In addition, Markov model and Bayesian networks are

used in the study of [7] for service modeling and response

time prediction. However, these solutions are only suitable

for QoS prediction of composite service but unsuitable

for individual component service. Because QoS values

usually change with environment factors (e.g., network

delay, user location and service location), for predicting

QoS of component services, many methods are proposed

to improve QoS prediction accuracy by considering this

environment information. In the study of [8], physical

location of service provider and network status are

considered for accurate QoS predictions. Geographical

information of users is used to improve QoS prediction

accuracy by [9]. Because these methods need special

environment information, their universality is restricted.

In present studies, collaborative filtering technology is

widely accepted for QoS prediction that has proven its

validity for service recommendation in the traditional e-

commerce field [10]. Methods of collaborative filtering

can automatically predict personalized QoS values for

current users by using information from similar users or

service items [11]. Typical collaborative filtering methods

include memory-based method and model-based method.

Memory-based method can be divided as three types:

user-based method, item-based method and their mixture

[12]. By using the memory-based method, we can predict

QoS values in an intuitive and comprehensible way.

However, this kind of method has a drawback in that it is

difficult to find similar users or service items when the

user-item matrix is sparse. The model-based method usually

predefines a domain model for a given system, and then

trains the model by existing training datasets for further

QoS prediction. This kind of method can incorporate special

domain knowledge and multiform artificial intelligence

techniques to achieve higher prediction accuracy [13, 14],

but meanwhile has drawbacks of high complexity and

limited universality.

Being different from the related studies, our study

focuses on response time prediction of IoT service due to

significance in many QoS properties. Unlike traditional

service composition systems, most IoT systems are time-

sensitive or even real-time systems [15]. Distributed real-

time interaction between services and users is the main

characteristic of IoT system [16]. Therefore, accurate

service response time prediction becomes a major challenge

for successful IoT service applications. To avoid expensive

real service invocations, we use historical service response

time records to make predictions for current users by

collaborative filtering. In contrast to classical prediction

methods, a novel method of response time prediction is

presented in this study that is more suitable for response

time prediction due to great change of response time

values in the real world. To depress the negative influence

of dissimilar neighbors, we adjust the initial calculation

result of similarity, and select satisfied similar neighbors

by a threshold. Focusing on the issue of sparse matrix, we

densify the user-item matrix by missing value predictions

of matrix elements. Validity of our prediction method is

proven by multiple experiments on a real QoS dataset.

The main contribution of this study is twofold: 
● We combine user-based and item-based methods of

collaborative filtering technology to make service

response time prediction, and meanwhile, adaptively

balance prediction dependence degree on these two

methods according to time similarity values. 
● Focusing on the characteristic that the IoT service

response time values change greatly, we propose

multiple prediction accuracy improvement methods,

including similarity adjustment, threshold filtering

and user-item matrix densification.

II. TIME SIMILARITY CALCULATION OF IOT
SERVICE RESPONSE TIME

A. The Construction of User-Item Matrix 

Historical data of IoT service response time can be

obtained through many ways, such as user logs or service

invocation records provided by corresponding IoT

middlewares. Using these historical data, we can construct

an M × N user-item matrix A= (aij). This matrix consists of

M service users U = {u1, u2, ... uM} and N service items

S = {s1, s2, ... sN}. The matrix element aij represents the

response time value of service sj observed by user ui.

When the user ui never used service sj before aij = null.

User-item matrix is the data source of further response

time prediction by collaborative filtering. The more

historical service response time data is collected from

different users, the more accurate prediction results can

be obtained. Fortunately, if there is an IoT service user

wants to yield better prediction results, he or she needs to

provide more past service usage data as much as possible.

Therefore, with accumulation of historical data provided

by various users, service response time prediction will

become more accurate.

B. The Calculation of Time Similarity

Collaborative filtering technology usually uses user-

based and item-based methods to make service predictions
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and service recommendations. Through these two methods,

historical information of similar users or similar service

items is used to predict unknown information for current

active users. In this study, we select Pearson’s correlation

coefficient to calculate similarity between users or service

items. Similarity between user u and v is calculated as

follows. 

(1)

In formula (1), aus and avs are the response time values

of service item s observed by user u and v, respectively.

 and  are the average response time values of all services

observed by user u and v, respectively.  is

a set of service items that have been invoked by user u

and v previously. When , i.e., when there are no same

service items observed by user u and v, Sim(u, v) = null.

The similarity between service item x and y is calculated

as follows.

(2)

In formula (2), aux and auy are the response time values

of service item x and y, respectively, observed by user u.

 and  are average response time values of service item

x and y, respectively, observed by all users. 

is a set of users that have invoked both service items

x and y previously. When , i.e., when not any

of users has invoked service item x and y previously,

Sim(x, y) = null.

It is suitable to calculate time similarity by Pearson’s

correlation coefficient, because this method is not sensitive

to change of absolute value between two vectors. For

example, similarity between vector (2,4,3,9) and (4,8,6,18)

is 1 through calculation of Pearson’s correlation coefficient,

although values of vector one are only half of vector two.

IoT service response time values often change greatly due

to many factors, such as communication bandwidth and

user location. Therefore, response time values observed

by different users on the same service item usually differ

largely. But through time similarity, we can find potential

and valuable information to make service response time

predictions. 

C. The Adjustment of Time Similarity

The overestimation problem often occurs in traditional

similarity calculation process. When the amount of the same

services invoked by two users is much less than the total

amount of services invoked by these two users, similarity

is occasional, untrusted, and even totally dissimilar. To

depress influence of the overestimation issue and improve

prediction accuracy, we adjust initial similarity calculation

results of formulas (1) and (2) as follows.

(3)

(4)

In the above two formulas,  and  are quantities

of services invoked by user u and v, respectively. 

is the quantity of same services invoked by user u and v.

 and  are the quantities of users that invoked

service x and y, respectively.  is the quantity of

users that invoked service x and y.  and

 are the new similarity values. Through similarity

adjustment, initial similarity values are decreased when

 and  are small. The range of values of

 and  is the same as that of

 and , which is [−1, 1].

III. THE RESPONSE TIME PREDICTION OF
IOT SERVICE

A. The Selection of Similar Neighbors

The Top-K algorithm is often used to select similar

neighbors in collaborative filtering method, i.e., the top k

most similar users or items are selected for further

prediction. Some users or items only have few similar

neighbors, and sometimes even have none. In this situation,

normal Top-K algorithm will introduce dissimilar neighbors

for calculation and highly decrease prediction accuracy.

To address this issue, we improve the normal Top-K

algorithm by adding a similarity threshold. Similar neighbors

are selected by using the following formulas.

(5)

(6)

In the above two formulas, SNu is a set of similar users of

user u and SNs is a set of similar service items of service s.

TopKu and TopKs are the sets of similar users and service

items selected by normal Top-K algorithm, respectively.

δ is a similarity threshold. Because negative correlation

between similar neighbors has no practical meaning in

prediction of IoT service response time in general, we set

the range of values of δ as (0,1) to exclude negative

dissimilar neighbors with negative or smaller similarity.

Suitable value of δ depends on the specific user-item

matrix.
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B. The Densification of User-Item Matrix

Prediction accuracy will become low when the user-

item matrix is sparse, called the sparse matrix problem. In

this situation, we can predict missing values of user-item

matrix to make it denser. Through densification of user-

item matrix, prediction accuracy of collaborative filtering

can be greatly improved [12]. Given a missing value

aus = null, when it has similar users but no similar services,

i.e., , aus is predicted as follows.

 

(7)

MVU(aus) is the response time prediction value of aus.

 and  are the average response time of services

invoked by user u and his similar user v, respectively.

When aus only has similar services but no similar users,

i.e., , aus is predicted as follow.

(8)

MVU(aus) is the response time prediction value of aus.

 and  are the average response time of service s and

its similar service , respectively, invoked by all users.

Being different from the normal calculation method of

collaborative filtering, in formulas (7) and (8),  and

 are added, that are amplitude ratios of average

service response time between two similar neighbors. We

provide an example to explain the reason. Suppose there

are four service items and a user u with response time

vector (2,4,3,9). We make an assumption that we do not

know response time value 9 of the fourth service item,

i.e., we treat it as a missing value and the new experimental

response time vector of u is (2,4,3, null). Then, we

predict this missing value by similar users of u. We first

give three prediction examples as follows, and then make

an explanation.

(1) Suppose user u only has one similar user v with

response time vector (4,8,6,18). Every value of (4,8,6,18)

is double of that of (2,4,3,9). Similarity between (2,4,3,9)

and (4,8,6,18) is 1 and similarity between (2,4,3, null)

and (4,8,6,18) is 0.478 by the calculation of formula (1).

 and . We

can get MVU(aus4) = 3 + 0.478 × (18 − 9) × (3/9)/0.478 = 6

by formula (7). Because the actual value is 9, the

prediction accuracy is . If we predict

the missing value based on the normal calculation

formula without amplitude ratio, shown in following

formula (9), we can get MVU(aus4) = 3 + 0.478 × (18 − 9)/
0.478 = 12. Prediction accuracy is .

 

(9)

(2) Suppose user u only has one similar user w with

response time vector (6,12,9,27). Every value of (6,12,9,27)

is triple of that of (2,4,3,9). Similarity between (2,4,3,9) and

(6,12,9,27) is still 1 and similarity between (2,4,3, null) and

(6,12,9,27) is still 0.478 by the calculation of formula (1).

 and .

We can get MVU(aus4) = 3 + 0.478 × (27 − 13.5) × (3/13.5)/
0.478 = 6 by formula (7). Prediction accuracy is 66.67%.

But through the formula (9), the prediction result is

MVU(aus4) = 3 + 0.478 × (27 − 13.5)/0.478 = 16.5, much

greater than the actual value 9. Prediction accuracy is

only .

(3) Suppose user u has two similar users v and w. We

can get MVU(aus4) = 3 + [0.478 × (18 − 9) × (3/9) + 0.478 ×
(27 − 13.5) × (3/13.5)]/(0.478 + 0.478) = 6 by formula (7).
Prediction accuracy is 66.67%. But through the formula (9),

the prediction result is MVU(aus4) = 3 + [0.478 × (18 − 9) +
0.478 × (27 − 13.5)]/(0.478 + 0.478) = 14.25.   Prediction
accuracy is only .

The three prediction examples above indicate that our

method is more suitable to make response time predictions.

A more stable and better prediction accuracy can be

obtained by considering response time amplitude ratios

between similar neighbors. The main reason is that

negative impact of the great change in response time values

on prediction results is depressed by amplitude ratio, and

every similar neighbor can provide a more reasonable

improvement value for prediction calculation process. 

When , to use the information of

similar neighbors as much as possible, we combine the

user-based and item-based methods to predict matrix

missing values. aus is predicted as follows.

MV(aus) = ω(aus) × MVU(aus) + (1 − ω(aus)) × 
MVS(aus), 0 < ω(aus) < 1 (10)

ω(aus) is a weight related to aus, used to determine

dependence degree of missing value prediction to user-

based and item-based prediction results. MV(aus) is the

composite prediction value of aus. ω(aus) is related to the

similarity values of similar users and similar service

items. For example, suppose aus has two similar users

with similarity (0.28, 0.31), and meanwhile, has two

similar service items with similarity (0.73, 0.85). Because

similarity of similar service items is much greater than

that of similar users, in the composite prediction result,

the weight of MVS(aus) should be much higher than that

of MVU(aus). ω(aus) is calculated as follows.
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(11)

(12)

(13)

AveSimU(aus) and AveSimS(aus) are average similarity

values of similar users and service items of aus, respectively.

When , i.e., aus has not any similar

neighbors, we do not make missing value prediction to

avoid influence of negative prediction results on prediction

accuracy.

C. The Response Time Prediction Algorithm
for Current Active Users

Via the algorithm shown in Fig. 1, current active users

can get response time prediction values of services they

did not use before. The prediction process is based on

densified user-item matrix, like the matrix missing value

prediction. The only difference is that we predict response

time by following formula (14) when .

The formula (14) represents the traditional user-mean

and item-mean methods.  is the average response time

value of the services invoked by the current active user u.

 is the average value of response times observed by

different users on the same service item s.

(14)

IV. The Validation of Prediction Accuracy

A. The Experiment Design

In this study, we use WS-DREAM dataset [14] to

validate our prediction method. This dataset is composed

of real historical QoS records of 100 distributed web

service items invoked by 150 service users in different

places. Every user invoked a service 100 times. The total

number of records is 1.5×106. This dataset is suitable for

the study of IoT services due to the reason that more IoT

functions are provided through web services.

We exclude 11 service items unsuccessfully invoked by

all users, and then construct a 150×89 user-item matrix as

the experiment dataset. The matrix element is the average

response time of 100 times service invocations. From the

experiment dataset, we select 90% users (i.e., 135 users)

to construct a 135×89 user-item matrix, and then select

other 10% users (i.e., 15 users) as current active users. To

simulate the sparse matrix, we randomly remove a

number of elements of the user-item matrix, and then

acquire matrixes with specific densities. In addition, we

randomly remove some service response time values of

current active users, and then use remaining values to

make predictions. The number of the remaining values is

set as an experiment parameter called service invocation

number, representing quantities of response time values

provided by current active users. In the experiments, we

use different methods to predict response time missing

values (i.e., those randomly removed values) for current

active users, and then compare prediction results with

removed real values to yield prediction accuracy of

different methods. Prediction accuracy is calculated as

follows.

(15)
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Fig. 1.  the response time prediction algorithm for current active users.
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PreAcc is prediction accuracy. aus is the real response

time value of service item s observed by current active

user u. MV(aus) is the prediction value. N is the quantity

of prediction values.

B. Prediction Accuracy Comparisons

We compare our composite prediction method (named

as CP) with four common prediction methods and a typical

prediction method, that are user-mean (UM), item-mean

(IM), user-based (UB), item-based (IB) and WSRec [12].

Comparison results are shown in Table 1.

UM uses average value of the known service item

response times of a current active user to predict other

unknown service item response times for this user, while

IM uses average response time of a service item observed

by other users to predict response time of this service item

for the current active user. UB only uses similar users to

make predictions and IB only uses similar service items to

make predictions. WSRec is like CP that also synthetically

uses user-based and item-based collaborative filtering

methods to make predictions. But there are some significant

differences between them. WSRec does not consider similarity

that is less than or equal to 0, while CP uses more flexible

similarity threshold to exclude dissimilar neighbors. In

addition, WSRec uses the method of setting parameters to

balance the prediction dependence degree on user-based

and item-based methods, while CP determines dependence

degree by the method of adaptive weight. Especially, in

contrast with WSRec, amplitude ratios of average response

time between similar neighbors are considered in CP,

making prediction results more accurate.

According to service invocation number, i.e., quantities

of response time values provided by every current active

user, we divide the experiment into three groups (10, 20,

and 30). D10, D15, …, D30 represent that the densities of

user-item matrix are 10%, 15%, …, 30%, respectively.

Every data in Table 1 is an average value of 30 times

experiment results. Some conclusions can be made from

experiment results. (1) In contrast with other methods, CP

obtains the best prediction accuracies under all experiment

conditions. (2) Focusing on the dataset used in this

experiment, prediction accuracy order of the six methods

from low to high is IM, IB, UM, UB, WSRec and CP. It is

worth noting that, in general, prediction accuracy of IB is

higher than that of UB in e-business applications. But

being different from user scores of commodities (e.g., user

scores of movies), IoT service response time values usually

change greatly. Therefore, in this situation, prediction

accuracy of IB is lower than that of UB. (3) Prediction

accuracy of UM slowly increases with increase in service

invocation number, while it is irrelevant to density of the

Table 1. The prediction accuracy (PreAcc) comparison

Service invocation number Prediction method
PreAcc (%)

D10 D15 D20 D25 D30

10 UM 69.56 69.41 69.61 69.44 69.68

IM 54.55 54.86 55.39 56.21 56.73

UB 71.58 72.23 72.64 73.12 74.47

IB 57.60 57.77 58.39 59.17 60.05

WSRec 69.39 72.05 72.87 73.90 74.72

CP 73.82 75.17 76.70 76.98 78.43

20 UM 70.62 71.57 71.28 71.50 71.41

IM 54.52 54.81 55.68 56.17 56.83

UB 72.09 72.80 73.61 74.42 75.28

IB 58.61 60.02 59.93 60.34 61.12

WSRec 69.97 71.89 73.23 74.75 75.44

CP 74.16 75.85 76.37 78.79 79.82

30 UM 71.53 71.77 71.88 72.07 71.86

IM 54.72 54.88 55.63 56.02 56.81

UB 72.72 73.42 74.17 74.87 75.90

IB 59.61 59.93 60.64 61.29 61.96

WSRec 69.95 72.23 73.86 74.68 76.24

CP 74.54 75.97 78.04 79.92 80.66
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user-item matrix. Prediction accuracy of IM slowly

increases with increase in density of user-item matrix,

while it is irrelevant to the service invocation number.

Being different from UM and IM, because information of

similar users and similar items is considered, prediction

accuracies of UB and IB gradually increase with the

increase in service invocation number and matrix density.

(4) Because WSRec and CP overcome the defect that

existing information cannot be fully used by other four

common prediction methods, prediction accuracies are

continually improved with the increase of information

provided by user-item matrix and current active users.

C. The Impact of Similarity Adjustment

To depress influence of the overestimation issue, initial

similarities are adjusted in CP method. We compare the

difference between CP with similarity adjustment and CP

without similarity adjustment under different service

invocation numbers. Density of user-item matrix is set as

20%. The comparison result is shown in Fig. 2.

In all situations of service invocation numbers, CP with

similarity adjustment has much better prediction accuracy

than CP without similarity adjustment. With increase of

service invocation number, more response time values of

current active users are provided. Therefore, more similar

neighbors can be found, which makes prediction accuracies

of both methods increase gradually. The improvement

effect of similarity adjustment becomes more obvious

when the service invocation number increases. This is

due to increase of similar neighbors and accumulation of

improvement effects. When using the dataset in this study,

the improvement amplitude of prediction accuracy is

limited through similarity adjustment. But in the situation

of large dataset with more overestimation issues, the

impact of similarity adjustment will become obvious.

D. The Impact of Improved Top-K Algorithm

The improved Top-K algorithm excludes similar neighbors

with negative similarities by adding a similarity threshold

δ. Too large value of δ will exclude some valuable similar

neighbors, while too small value of δ will include dissimilar

neighbors and decrease prediction accuracy obviously.

Meanwhile, too large or too small value of Top-K will

also impact prediction accuracy. Suitable values of Top-K

and δ depend on specific dataset. We set δ = 0.14 and

Top-K=9 in our experiments after comparing many

experiment results of different Top-K and δ values. Then,

we compare the improved Top-K algorithm with the

normal Top-K algorithm. The experiment result is shown

in Fig. 3. In this experiment, density of user-item matrix

is set at 15%.

In contrast with the normal Top-K algorithm, improved

Top-K algorithm has much better prediction accuracy. With

increase of service invocation number, similar neighbors

with negative similarities are naturally excluded by Top-K

value. Therefore, improved Top-K algorithm is more

suitable to the situation than information current active

user is lacking.

E. The Impact of Matrix Densification

To depress influence of sparse matrix, we densify the

user-item matrix before making predictions. Differences of

prediction accuracies between CP with matrix densification

and CP without matrix densification are compared under

different matrix densities. Comparison results are shown

in Fig. 4. In this experiment, service invocation number is

set at 10. 

Fig. 2. The impact of similarity adjustment. Fig. 4. The impact of matrix densification.

Fig. 3. The impact of improved Top-K algorithm.
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After applying user-item matrix densification, CP can

yield much better prediction accuracy. With increase of

matrix density, prediction accuracies of CP with matrix

densification and CP without matrix densification increase

gradually due to increased information for prediction. In

the situation of low matrix density, improvement effect of

matrix densification is more obvious. From experiment

results, we also know that matrix densification can decrease

volatility of prediction results and increase its stability,

especially in the situation of low matrix density.

F. The Impact of Amplitude Ratio

To adapt to the great change of IoT service response

time values, we add response time amplitude ratio in

prediction process. Prediction accuracies of CP with

amplitude ratio and CP without it are compared under

different matrix densities. Comparison results are shown

in Fig. 5. Service invocation number is set at 25 in this

experiment.

The experiment result indicates that considering response

time amplitude ratio in prediction process can increase

prediction accuracy under different matrix densities. In

this experiment dataset, quantity of effective similar

neighbors is limited. When facing a large user-item matrix,

the impact of amplitude ratio will become more obvious.

V. CONCLUSION

Service response time is a typical user-dependent QoS

attribute, difficult to be predicted for IoT users. We combine

user-based and item-based collaborative filtering methods

to make service response time predictions. Many approaches

are applied to improve prediction accuracy, including

similarity adjustment, Top-K algorithm improvement, matrix

densification and adaptive weight calculation. Especially,

the response time amplitude ratio is considered in our

study, suitable to address the issue that the response time of

the same service often changes greatly to different users

in complex IoT environment. Effectiveness of our prediction

method is validated by multiple experiments on real

dataset. By using prediction results, the IoT system can

recommend a set of services with optimal response time

for current active users that decreases time consumption

of service search and selection, and meanwhile, increases

the ability to provide on-demand services.
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