DOI QR코드

DOI QR Code

A real-time unmeasured dynamic response prediction for nuclear facility pressure pipeline system

  • Seungin Oh (Department of Mechanical Engineering (Integrated Engineering), Kyung Hee University) ;
  • Hyunwoo Baek (Department of Mechanical Engineering (Integrated Engineering), Kyung Hee University) ;
  • Kang-Heon Lee (Korean Atomic Energy Research Institute) ;
  • Dae-Sic Jang (Korean Atomic Energy Research Institute) ;
  • Jihyun Jun (Korean Atomic Energy Research Institute) ;
  • Jin-Gyun Kim (Department of Mechanical Engineering (Integrated Engineering), Kyung Hee University)
  • Received : 2022.12.26
  • Accepted : 2023.03.23
  • Published : 2023.07.25

Abstract

A real-time unmeasured dynamic response prediction process for the nuclear power plant pressure pipeline is proposed and its performance is tested in the test-loop system (KAERI). The aim of the process is to predict unmeasurable or unreachable dynamic responses such as acceleration, velocity, and displacement by using a limited amount of directly measured physical responses. It is achieved by combining a well-constructed finite element model and robust inverse force identification algorithm. The pressure pipeline system is described by using the displacement-pressure vibro-acoustic formulation to consider fully filled liquid effect inside the pipeline structure. A robust multiphysics modal projection technique is employed for the real-time sensor synchronized prediction. The inverse force identification method is also derived and employed by using Bathe's time integration method to identify the full-field responses of the target system from the modal domain computation. To validate the performance of the proposed process, an experimental test is extensively performed on the nuclear power plant pressure pipeline test-loop under operation conditions. The results show that the proposed identification process could well estimate the unmeasured acceleration in both frequency and time domain faster than 32,768 samples per sec.

Keywords

Acknowledgement

This research was funded by National Research Foundation of Korea (NRF-2020M2C9A1062790, NRF-2021R1A2C4087079).

References

  1. I.J. Jin, D.Y. Lim, I.C. Bang, Deep-learning-based System-Scale Diagnosis of a Nuclear Power Plant with Multiple Infrared Cameras, Nuclear Engineering and Technology, 2022. 
  2. G. Li, X. Wang, B. Liang, X. Li, B. Zhang, Y. Zou, Modeling and control of nuclear reactor cores for electricity generation: a review of advanced technologies, Renew. Sustain. Energy Rev. 60 (2016) 116-128.  https://doi.org/10.1016/j.rser.2016.01.116
  3. H. Gong, T. Zhu, Z. Chen, Y. Wan, Q. Li, Parameter Identification and state estimation for nuclear reactor operation digital twin, Ann. Nucl. Energy 180 (2023), 109497. 
  4. S.Y. Chu, C.J. Kang, Development of the structural health record of containment building in nuclear power plant, Nucl. Eng. Technol. 53 (6) (2021) 2038-2045.  https://doi.org/10.1016/j.net.2020.12.018
  5. G. Qian, J. Liu, A comparative study of deep learning-based fault diagnosis methods for rotating machines in nuclear power plants, Ann. Nucl. Energy 178 (2022) 1093. 
  6. M.I. Radaideh, C. Pigg, T. Kozlowski, Y. Deng, A. Qu, Neural-based time series forecasting of loss of coolant accidents in nuclear power plants, Expert Syst. Appl. 160 (2020), 113699. 
  7. H. Sung, S. Chang, M. Cho, Structural-system identification via a reduced system and the sensor-location selection method, AIAA J. 57 (5) (2019) 2100-2108.  https://doi.org/10.2514/1.J057636
  8. S. Chang, S. Baek, K.O. Kim, M. Cho, Structural system identification using degree of freedom-based reduction and hierarchical clustering algorithm, J. Sound Vib. 346 (2015) 139-152.  https://doi.org/10.1016/j.jsv.2015.02.031
  9. S.S. Law, T.H. Chan, Q.H. Zeng, Moving force identification: a time domain method, J. Sound Vib. 201 (1) (1997) 1-22.  https://doi.org/10.1006/jsvi.1996.0774
  10. X.Q. Zhu, S.S. Law, Identification of vehicle axle loads from bridge dynamic responses, J. Sound Vib. 236 (4) (2000) 705-724.  https://doi.org/10.1006/jsvi.2000.3021
  11. X.Q. Zhu, S.S. Law, Identification of moving loads on an orthotropic plate, J. Vib. Acoust. 123 (2) (2001) 238-244.  https://doi.org/10.1115/1.1349889
  12. D.C. Kammer, Input force reconstruction using a time-domain technique, J. Vib. Acoust. 120 (4) (1998) 868-874.  https://doi.org/10.1115/1.2893913
  13. S.S. Law, J.Q. Bu, X.Q. Zhu, Time-varying wind load identification from structural responses, Eng. Struct. 27 (10) (2001) 1586-1598.  https://doi.org/10.1016/j.engstruct.2005.05.007
  14. K. Liu, S.S. Law, X.Q. Zhu, Y. Xia, Explicit form of an implicit method for inverse force identification, J. Sound Vib. 333 (3) (2014) 730-744.  https://doi.org/10.1016/j.jsv.2013.09.040
  15. S. Oh, H. Lee, J.K. Lee, H. Yoon, J.G. Kim, Real-time Response Estimation of Structural Vibration with Inverse Force Identification, 2022 arXiv, preprint arXiv:2211.12513. 
  16. S. Oh, C. Ahn, K. Ahn, J.G. Kim, Implicit Inverse Force Identification Method of Acoustic Liquid-Structure Interaction Finite Element Model, 2022 arXiv, preprint arXiv:2211.12137. 
  17. E. Lourens, E. Reynders, G. De Roeck, G. Degrande, G. Lombaert, An augmented Kalman filter for force identification in structural dynamics, Mech. Syst. Signal Process. 27 (2012) 446-460.  https://doi.org/10.1016/j.ymssp.2011.09.025
  18. F. Naets, J. Cuadrado, W. Desmet, Stable force identification in structural dynamics using Kalman filtering and dummy-measurements, Mech. Syst. Signal Process. 50 (2015) 235-248.  https://doi.org/10.1016/j.ymssp.2014.05.042
  19. S.E. Azam, E. Chatzi, C. Papadimitriou, A dual Kalman filter approach for state estimation via output-only acceleration measurements, Mech. Syst. Signal Process. 60 (2015) 866-886.  https://doi.org/10.1016/j.ymssp.2015.02.001
  20. R. Ohayon, C. Soize, Advanced Computational Vibroacoustics: Reduced-Order Models and Uncertainty Quantification, Cambridge University Press, 2014. 
  21. Y. Choi, J.B. Park, S.J. Lee, N.C. Park, Y.P. Park, J.S. Kim, W.J. Roh, Seismic analysis of the APR 1400 reactor vessel internals using the model reduction method, J. Nucl. Sci. Technol. 53 (11) (2016) 1701-1714.  https://doi.org/10.1080/00223131.2016.1152921
  22. Y. Choi, J.B. Park, S.J. Lee, N.C. Park, Y.P. Park, J.S. Kim, W.J. Roh, Model reduction methods for cylindrical structures in reactor internals considering the fluid-structure interaction, J. Nucl. Sci. Technol. 53 (2) (2016) 204-222.  https://doi.org/10.1080/00223131.2015.1035352
  23. S.M. Kim, J.G. Kim, S.W. Chae, K.C. Park, A strongly coupled model reduction of vibro-acoustic interaction, Comput. Methods Appl. Mech. Eng. 347 (2019) 495-516.  https://doi.org/10.1016/j.cma.2018.12.029
  24. S.M. Kim, S.W. Chae, J.G. Kim, Multiphysics model reduction of symmetric vibro-acoustic formulation with a priori error estimation criteria, Int. J. Numer. Methods Eng. 121 (23) (2020) 5381-5404.  https://doi.org/10.1002/nme.6524
  25. K.H. Lee, R.W. Hagos, S. Chang, J.G. Kim, Multiphysics mode synthesis of fluid-structure interaction with free surface, Eng. Comput. 1-16 (2022). 
  26. N.M. Newmark, A method of computation for structural dynamics, J. Eng. Mech. Div. 85 (3) (1959) 67-94.  https://doi.org/10.1061/JMCEA3.0000098
  27. K.J. Bathe, Conserving energy and momentum in nonlinear dynamics: a simple implicit time integration scheme, Comput. Struct. 85 (2007) 7-8, 437-445.  https://doi.org/10.1016/j.compstruc.2006.09.004
  28. K.J. Bathe, Finite Element Procedures, second de., Klaus-Jurgen Bathe, 2006. 
  29. A.N. Tikhonov, On the solution of ill-posed problems and the method of regularization, Dokl. Akad. Nauk SSSR 151 (3) (1963) 501-504. 
  30. A.N. Tikhonov, A. Goncharsky, V. Stepanov, A.G. Yagola, Numerical Methods for the Solution of Ill-Posed Problems, vol. 328, Springer Science & Business Media, 1995. 
  31. P.C. Hansen, Rank-deficient and Discrete Ill-Posed Problems: Numerical Aspects of Linear Inversion, SIAM, 1998. 
  32. T.L. Geer, An objective error measure for the comparison of calculated and measured transient response histories, Shock and Vibration Information Center The Shock and Vibration Bull 54 (1984) 99-108 (SEE N 85-18388 09-39). 
  33. B. Whang, W.E. Gilbert, S. Zilliacus, Two visually meaningful correlation measures for comparing calculated and measured response histories, Shock Vib. 1 (4) (1994) 303-316.  https://doi.org/10.1155/1994/329231
  34. J.J. Dragovich, A. Lepage, FDE index for goodness-of-fit between measured and calculated response signals, Earthq. Eng. Struct. Dynam. 38 (15) (2009) 1751-1758. https://doi.org/10.1002/eqe.951