• 제목/요약/키워드: Real-time Optimization

검색결과 826건 처리시간 0.024초

Service ORiented Computing EnviRonment (SORCER) for deterministic global and stochastic aircraft design optimization: part 2

  • Raghunath, Chaitra;Watson, Layne T.;Jrad, Mohamed;Kapania, Rakesh K.;Kolonay, Raymond M.
    • Advances in aircraft and spacecraft science
    • /
    • 제4권3호
    • /
    • pp.317-334
    • /
    • 2017
  • With rapid growth in the complexity of large scale engineering systems, the application of multidisciplinary analysis and design optimization (MDO) in the engineering design process has garnered much attention. MDO addresses the challenge of integrating several different disciplines into the design process. Primary challenges of MDO include computational expense and poor scalability. The introduction of a distributed, collaborative computational environment results in better utilization of available computational resources, reducing the time to solution, and enhancing scalability. SORCER, a Java-based network-centric computing platform, enables analyses and design studies in a distributed collaborative computing environment. Two different optimization algorithms widely used in multidisciplinary engineering design-VTDIRECT95 and QNSTOP-are implemented on a SORCER grid. VTDIRECT95, a Fortran 95 implementation of D. R. Jones' algorithm DIRECT, is a highly parallelizable derivative-free deterministic global optimization algorithm. QNSTOP is a parallel quasi-Newton algorithm for stochastic optimization problems. The purpose of integrating VTDIRECT95 and QNSTOP into the SORCER framework is to provide load balancing among computational resources, resulting in a dynamically scalable process. Further, the federated computing paradigm implemented by SORCER manages distributed services in real time, thereby significantly speeding up the design process. Part 1 covers SORCER and the algorithms, Part 2 presents results for aircraft panel design with curvilinear stiffeners.

Finite element model updating of a cable-stayed bridge using metaheuristic algorithms combined with Morris method for sensitivity analysis

  • Ho, Long V.;Khatir, Samir;Roeck, Guido D.;Bui-Tien, Thanh;Wahab, Magd Abdel
    • Smart Structures and Systems
    • /
    • 제26권4호
    • /
    • pp.451-468
    • /
    • 2020
  • Although model updating has been widely applied using a specific optimization algorithm with a single objective function using frequencies, mode shapes or frequency response functions, there are few studies that investigate hybrid optimization algorithms for real structures. Many of them did not take into account the sensitivity of the updating parameters to the model outputs. Therefore, in this paper, optimization algorithms and sensitivity analysis are applied for model updating of a real cable-stayed bridge, i.e., the Kien bridge in Vietnam, based on experimental data. First, a global sensitivity analysis using Morris method is employed to find out the most sensitive parameters among twenty surveyed parameters based on the outputs of a Finite Element (FE) model. Then, an objective function related to the differences between frequencies, and mode shapes by means of MAC, COMAC and eCOMAC indices, is introduced. Three metaheuristic algorithms, namely Gravitational Search Algorithm (GSA), Particle Swarm Optimization algorithm (PSO) and hybrid PSOGSA algorithm, are applied to minimize the difference between simulation and experimental results. A laboratory pipe and Kien bridge are used to validate the proposed approach. Efficiency and reliability of the proposed algorithms are investigated by comparing their convergence rate, computational time, errors in frequencies and mode shapes with experimental data. From the results, PSO and PSOGSA show good performance and are suitable for complex and time-consuming analysis such as model updating of a real cable-stayed bridge. Meanwhile, GSA shows a slow convergence for the same number of population and iterations as PSO and PSOGSA.

A Multi-objective Optimization Approach to Workflow Scheduling in Clouds Considering Fault Recovery

  • Xu, Heyang;Yang, Bo;Qi, Weiwei;Ahene, Emmanuel
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권3호
    • /
    • pp.976-995
    • /
    • 2016
  • Workflow scheduling is one of the challenging problems in cloud computing, especially when service reliability is considered. To improve cloud service reliability, fault tolerance techniques such as fault recovery can be employed. Practically, fault recovery has impact on the performance of workflow scheduling. Such impact deserves detailed research. Only few research works on workflow scheduling consider fault recovery and its impact. In this paper, we investigate the problem of workflow scheduling in clouds, considering the probability that cloud resources may fail during execution. We formulate this problem as a multi-objective optimization model. The first optimization objective is to minimize the overall completion time and the second one is to minimize the overall execution cost. Based on the proposed optimization model, we develop a heuristic-based algorithm called Min-min based time and cost tradeoff (MTCT). We perform extensive simulations with four different real world scientific workflows to verify the validity of the proposed model and evaluate the performance of our algorithm. The results show that, as expected, fault recovery has significant impact on the two performance criteria, and the proposed MTCT algorithm is useful for real life workflow scheduling when both of the two optimization objectives are considered.

Intelligent quality estimation system using primary circuit variables of RSW (저항점용접 1차 공정변수를 이용한 지능형 용접품질 판단 시스템)

  • 조용준;이세헌;신현일;배경민;권태용
    • Proceedings of the KWS Conference
    • /
    • 대한용접접합학회 1999년도 특별강연 및 추계학술발표대회 개요집
    • /
    • pp.142-145
    • /
    • 1999
  • The dynamic resistance monitoring is one of the important issues in that in-process and real time quality assurance of resistance spot weld is needed to increase the product reliability. Secondary dynamic resistance patterns, as a real manner, are hard to adapt those factors in real time and in-plant system. In the present study, a new dynamic resistance detecting method is presented as a practical manner of weld quality assurance at the primary circuit. By the correlation analysis, it is found that the primary dynamic resistance patterns are basically similar to those of the secondary. Various dynamic resistance indices are characterized with the primary curve. And quality of the weld, like the tensile shear strength, is estimated using adaptive neuro-fuzzy estimation system which is consisted of the Sugeno fuzzy algorithm. Through the fuzzy clustering and parameter optimization, real time weld quality assurance system with less efforts is proposed.

  • PDF

Real-Time Camera Tracking for Virtual Stud (가상스튜디오 구현을 위한 실시간 카메라 추적)

  • Park, Seong-Woo;Seo, Yong-Duek;Hong, Ki-Sang
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • 제36S권7호
    • /
    • pp.90-103
    • /
    • 1999
  • In this paper, we present an overall algorithm for real-time camera parameter extraction which is one of key elements in implementing virtual studio. The prevailing mechanical methode for tracking cameras have several disadvantage such as the price, calibration with the camera and operability. To overcome these disadvantages we calculate camera parameters directly from the input image using computer-vision technique. When using zoom lenses, it requires real time calculation of lens distortion. But in Tsai algorithm, adopted for camera calibration, it can be calculated through nonlinear optimization in triple parameter space, which usually takes long computation time. We proposed a new method, separating lens distortion parameter from the other two parameters, so that it is reduced to nonlinear optimization in one parameter space, which can be computed fast enough for real time application.

  • PDF

Evaluation on performances of a real-time microscopic and telescopic monitoring system for diagnoses of vibratory bodies

  • Jeon, Min Gyu;Doh, Deog Hee;Kim, Ue Kan;Kim, Kang Ki
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제38권10호
    • /
    • pp.1275-1280
    • /
    • 2014
  • In this study, the performance of a real-time micro telescopic monitoring system is evaluated, in which an artificial neural network is adopted for the diagnoses of vibratory bodies, such as solid piping system or machinery. The structural vibration was measured by a non-contact remote sensing method, in which images of a high-speed high-definition camera were used. The structural vibration data that can be obtained by the PIV (particle image velocimetry) technique were used for training the neural network. The structures of the neural network are dynamically changed and their performances are evaluated for the constructed diagnosis system. Optimized structures of the neural network are proposed for real-time diagnosis for the piping system. It was experimentally verified that the performances of the neural network used for real-time monitoring are influenced by the types of the vibration data, such as minimum, maximum and average values of the vibration data. It concludes that the time-mean values are most appropriate for monitoring the piping system.

LASER WELDING APPLICATION IN CAR BODY MANUFACTURING

  • Shin, Hyun-Oh;Chang, In-Sung;Jung, Chang-Ho
    • Proceedings of the KWS Conference
    • /
    • 대한용접접합학회 2002년도 Proceedings of the International Welding/Joining Conference-Korea
    • /
    • pp.181-186
    • /
    • 2002
  • Laser welding application for car body manufacturing has many advantages in the stiffness and the lightness of vehicle, the productivity of assembly line, and the degree of freedom in design. This presentation will express the innovation of car body manufacturing including parameter optimization, process modeling, and system integration. In this application the investment for systems was cut down dramatically by real time switching over the laser path between two welding stations. Points of technical discussion are as follows: optimization of parameters such as laser power, robot speed and trajectory, compact and useful design of jig & fixture to assure welding quality for 3 sheet-layer zinc-coated steel, system integration between 4kW Nd:YAG laser device and the other systems, on-line real time welding quality monitoring system, perfect safety standards for high power laser, minimization of consumption costs such as arc lamp, protective glass for optic, etc. Laser welding has found a place on Hyundai's production plant in conjunction with the startup of mass production of new sports car, and this production system is the result of a collaboration of its engineers. Outer side sheets are joined to inner side sheets by 122 stitch welds totally. And the length is about 2.4meter.

  • PDF

A Case Study of a Navigator Optimization Process

  • Cho, Doosan
    • International journal of advanced smart convergence
    • /
    • 제6권1호
    • /
    • pp.26-31
    • /
    • 2017
  • When mobile navigator device accesses data randomly, the cache memory performance is rapidly deteriorated due to low memory access locality. For instance, GPS (General Positioning System) of navigator program for automobiles or drones, that are currently in common use, uses data from 32 satellites and computes current position of a receiver. This computation of positioning is the major part of GPS which accounts more than 50% computation in the program. In this computation task, the satellite signals are received in real time and stored in buffer memories. At this task, since necessary data cannot be sequentially stored, the data is read and used at random. This data accessing patterns are generated randomly, thus, memory system performance is worse by low data locality. As a result, it is difficult to process data in real time due to low data localization. Improving the low memory access locality inherited on the algorithms of conventional communication applications requires a certain optimization technique to solve this problem. In this study, we try to do optimizations with data and memory to improve the locality problem. In experiment, we show that our case study can improve processing speed of core computation and improve our overall system performance by 14%.

Timing Optimization of Real-Time System Design for Embedded Systems (Embedded System Design을 위한 Real-Time System의 최적화된 Timing효과의 구현)

  • Park, Eun-Jung;Jeong, Tai-Kyeong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • 제10권3호
    • /
    • pp.564-570
    • /
    • 2006
  • This paper presents a new real-time system design methodology for embedded system as well as event-driven real time application. It is required to implement a deadline handling mechanism in order to satisfy a large-scale distributed real time application. When we design real time system, it has handled a deadline and is important to measure / control a timing issue. These timing constraints usually associated with an interface between model and system. There are many case tools that supporting a real time application, for example, UML, graphic language for designing real time system, but they cannot provide efficient way to handle deadline miss. Therefore, users have to design deadline handler manually when they need to use it. This paper contributes solving the problems of user-level deadline handling for an embedded system. Also, it also discusses an efficient deadline handler design mechanism using on RoseRT, which is a graphical CASE tool supporting from UML.

Real-time Implementation of the AMR-WB+ Audio Coder using ARM Core(R) (ARM Core(R)를 이용한 AMR-WB+ 오디오 부호화기의 실시간 구현)

  • Won, Yang-Hee;Lee, Hyung-Il;Kang, Sang-Won
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • 제46권3호
    • /
    • pp.119-124
    • /
    • 2009
  • In this paper, AMR-WB+ audio coder is implemented, in real-time, using Intel 400MHz Xscale PXA250 with 32bit RISC processor ARM9E-J(R)core. The assembly code for ARM9E-J(R)core is developed through the serial process of C code optimization, cross compile, assembly code manual optimization and adjusting the optimized code to Embedded Visual C++ platform. C code is trimmed on Visual C++ platform. Cross compile and assembly code manual optimization are performed on CodeWarrior with ARM compiler. Through these stages the code for both ARM EVM board and PDA is implemented. The average complexities of the code are 160.75MHz on encoder and 33.05MHz on decoder. In case of static link library(SLL), the required memories are 65.21Kbyte, 32.01Kbyte and 279.81Kbyte on encoder, decoder and common sources, respectively. The implemented coder is evaluated using 16 test vectors given by 3GPP to verify the bit-exactness of the coder.