Browse > Article
http://dx.doi.org/10.12989/sss.2020.26.4.451

Finite element model updating of a cable-stayed bridge using metaheuristic algorithms combined with Morris method for sensitivity analysis  

Ho, Long V. (Faculty of Engineering and Architecture, Ghent University)
Khatir, Samir (Faculty of Engineering and Architecture, Ghent University)
Roeck, Guido D. (Department of Civil Engineering, KU Leuven)
Bui-Tien, Thanh (Faculty of Civil Engineering, University of Transport and Communications)
Wahab, Magd Abdel (Division of Computational Mechanics, Ton Duc Thang University)
Publication Information
Smart Structures and Systems / v.26, no.4, 2020 , pp. 451-468 More about this Journal
Abstract
Although model updating has been widely applied using a specific optimization algorithm with a single objective function using frequencies, mode shapes or frequency response functions, there are few studies that investigate hybrid optimization algorithms for real structures. Many of them did not take into account the sensitivity of the updating parameters to the model outputs. Therefore, in this paper, optimization algorithms and sensitivity analysis are applied for model updating of a real cable-stayed bridge, i.e., the Kien bridge in Vietnam, based on experimental data. First, a global sensitivity analysis using Morris method is employed to find out the most sensitive parameters among twenty surveyed parameters based on the outputs of a Finite Element (FE) model. Then, an objective function related to the differences between frequencies, and mode shapes by means of MAC, COMAC and eCOMAC indices, is introduced. Three metaheuristic algorithms, namely Gravitational Search Algorithm (GSA), Particle Swarm Optimization algorithm (PSO) and hybrid PSOGSA algorithm, are applied to minimize the difference between simulation and experimental results. A laboratory pipe and Kien bridge are used to validate the proposed approach. Efficiency and reliability of the proposed algorithms are investigated by comparing their convergence rate, computational time, errors in frequencies and mode shapes with experimental data. From the results, PSO and PSOGSA show good performance and are suitable for complex and time-consuming analysis such as model updating of a real cable-stayed bridge. Meanwhile, GSA shows a slow convergence for the same number of population and iterations as PSO and PSOGSA.
Keywords
Kien bridge; PSO; GSA; PSOGSA; global sensitivity analysis;
Citations & Related Records
Times Cited By KSCI : 12  (Citation Analysis)
연도 인용수 순위
1 Khatir, S., Wahab, M.A., Boutchicha, D., Capozucca, R. and Khatir, T. (2019), "Optimization of IGA parameters based on beam structure using cuckoo search algorithm", Proceedings of the 1st International Conference on Numerical Modelling in Engineering, Singapore, August.
2 Khatir, S., Dekemele, K., Loccufier, M., Khatir, T. and Wahab, M.A. (2018), "Crack identification method in beam-like structures using changes in experimentally measured frequencies and particle swarm optimization", Comptes Rendus Mecanique, 346(2), 110-120. https://doi.org/10.1016/j.crme.2017.11.008.   DOI
3 Khatir, S., Khatir, T., Boutchicha, D., Le Thanh, C., Tran-Ngoc, H., Bui, T.Q., Capozucca, R. and Abdel-Wahab, M. (2020), "An efficient hybrid TLBO-PSO-ANN for fast damage identification in steel beam structures using IGA", Smart Struct. Syst., Int. J., 25, 605-617. https://doi.org/10.12989/sss.2020.25.5.605.
4 Le-Duc, T., Nguyen, Q.H. and Nguyen-Xuan, H. (2020), "Balancing composite motion optimization", Inf. Sci., 520, 250-270. https://doi.org/10.1016/j.ins.2020.02.013.   DOI
5 Lin, R.M. and Ewins, D.J. (1994), "Analytical model improvement using frequency response functions", Mech. Syst. Signal Process., 8(4), 437-458. https://doi.org/10.1006/mssp.1994.1032.   DOI
6 Menberg, K., Heo, Y. and Choudhary, R. (2016), "Sensitivity analysis methods for building energy models: Comparing computational costs and extractable information", Energy Build., 133, 433-445. https://doi.org/10.1016/j.enbuild.2016.10.005.   DOI
7 Mirjalili, S., Wang, G.G. and Coelho, L.S. (2014), "Binary optimization using hybrid particle swarm optimization and gravitational search algorithm", Neural Comput. Appl., 25(6), 1423-1435. https://doi.org/10.1007/s00521-014-1629-6.   DOI
8 Morris, M.D. (1991), "Factorial sampling plans for preliminary computational experiments", Technimetrics, 33(2), 161-174. https://doi.org/10.2307/1269043.   DOI
9 Khatir, S., Wahab, M.A., Boutchicha, D. and Khatir, T. (2019), "Structural health monitoring using modal strain energy damage indicator coupled with teaching-learning-based optimization algorithm and isogoemetric analysis", J. Sound Vib., 448, 230-246. https://doi.org/10.1016/j.jsv.2019.02.017.   DOI
10 Altunisik, A.C. and Bayraktar, A. (2017), "Manual model updating of highway bridges under operational condition", Smart Struct. Syst., Int. J., 19(1), 39-46. https://doi.org/10.12989/sss.2017.19.1.039.   DOI
11 Anitescu, C., Atroshchenko, E., Alajlan, N. and Rabczuk, T. (2019), "Artificial neural network methods for the solution of second order boundary value problems", Comput. Mater. Contin., 59(1), 345-359. https://doi.org/10.32604/cmc.2019.06641.   DOI
12 Boscato, G., Salvatore, R., Ceravolo, R. and Fragonara, L.Z. (2015), "Global sensitivity-based model updating for heritage structures: Global sensitivity-based model updating for heritage structures", Comput. Aided Civ. Infrastruct. Eng., 30(8), 620-635. https://doi.org/10.1111/mice.12138.   DOI
13 Reynders, E., Schevenels, M. and De Roeck, G. (2014), "A MATLAB toolbox for experimental and operational modal analysis", MACEC 3.2, Department of Civil Engineering, KU Leuven, Belgium.
14 Peeters, B. and De Roeck, G. (2001), "Stochastic system identification for operational modal analysis: A review", J. Dyn. Syst. Meas. Control, 123(4) 659-667. https://doi.org/10.1115/1.1410370.   DOI
15 Qin, S., Zhang, Y., Zhou, Y.L. and Kang, J. (2018), "Dynamic model updating for bridge structures using the kriging model and PSO algorithm ensemble with higher vibration modes", Sensors, 18(6), 1879. https://doi.org/10.3390/s18061879.   DOI
16 Rashedi, E., Nezamabadi-pour, H. and Saryazdi, S. (2009), "GSA: A gravitational search algorithm", Inf. Sci., 179(13), 2232-2248. https://doi.org/10.1016/j.ins.2009.03.004.   DOI
17 Reynders, E., Pintelon, R. and De Roeck, G. (2008), "Uncertainty bounds on modal parameters obtained from stochastic subspace identification", Mech. Syst. Signal Process., 22(4) 948-969. https://doi.org/10.1016/j.ymssp.2007.10.009.   DOI
18 Reynders, Ed. and De Roeck, G. (2008), "Reference-based combined deterministic-stochastic subspace identification for experimental and operational modal analysis", Mech. Syst. Signal Process., 22(3) 617-637. https://doi.org/10.1016/j.ymssp.2007.09.004.   DOI
19 Sobol, I.M. (2001), "Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates", Math. Comput. Simul., 55(1-3) 271-280. https://doi.org/10.1016/S0378-4754(00)00270-6.   DOI
20 Saltelli, A. (2004), Sensitivity Analysis in Practice: A Guide to Assessing Scientific Models", John Wiley & Sons Ltd, Chichester, West Sussex, UK.
21 ANSYS (2016), ANSYS Mechanical Release 17.0, ANSYS Inc.
22 Peeters, B. (2000), "System identification and damage detection in civil engineering", Ph.D. Dissertation, Katholieke Universiteit Leuven, Belgium.
23 Cottin, N. and Reetz, J. (2006), "Accuracy of multiparameter eigenvalues used for dynamic model updating with measured natural frequencies only", Mech. Syst. Signal Process., 20(1), 65-77. https://doi.org/10.1016/j.ymssp.2004.10.005.   DOI
24 Bui, T.T. (2011), "Experimental report of a plain pipe", Report No 01, Department of Civil Engineering, KU Leuven, Belgium.
25 Campolongo, F., Cariboni, J. and Saltelli, A. (2007), "An effective screening design for sensitivity analysis of large models", Environ. Model. Softw., 22(10), 1509-1518. https://doi.org/10.1016/j.envsoft.2006.10.004.   DOI
26 Carvalho, J., Datta, B.N., Gupta, A. and Lagadapati, M. (2007), "A direct method for model updating with incomplete measured data and without spurious modes", Mech. Syst. Signal Process., 21(7), 2715-2731. https://doi.org/10.1016/j.ymssp.2007.03.001.   DOI
27 Casciati, F., Casciati, S., Elia, L. and Faravelli, L. (2016), "Optimal reduction from an initial sensor deployment along the deck of a cable-stayed bridge", Smart Struct. Syst., Int. J., 17(3), 523-539. https://doi.org/10.12989/sss.2016.17.3.523.   DOI
28 Chen, H.P and Ni, Y.Q. (2018), Structural Health Monitoring of Large Civil Engineering Structures, John Wiley & Sons Ltd, Chichester, West Sussex, UK.
29 Deng, Lu. and Cai, C.S. (2010), "Bridge model updating using response surface method and genetic algorithm", J. Bridge Eng., 15(5), 553-564. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000092.   DOI
30 Feng, K., Lu, Z. and Yang, C. (2019), "Enhanced Morris method for global sensitivity analysis: Good proxy of Sobol' index", Struct. Multidiscipl. Optim., 59(2), 373-387. https://doi.org/10.1007/s00158-018-2071-7.   DOI
31 Huang, T.L. and Chen, H.P. (2017), "Mode identifiability of a cable-stayed bridge using modal contribution index", Smart Struct. Syst., Int. J., 20(2), 115-126. https://doi.org/10.12989/sss.2017.20.2.115.
32 Hunt, D.L. (1992), "Application of an enhanced coordinate modal assurance criterion", Proceedings of the 10th International Modal Analysis Conference, San Diego, CA, USA, February.
33 Tran-Ngoc, H., He, L., Reynders, E., Khatir, S., Le-Xuan, T., De Roeck, G., Bui-Tien, T. and Abdel Wahab, M. (2020), "An efficient approach to model updating for a multispan railway bridge using orthogonal diagonalization combined with improved particle swarm optimization", J. Sound Vib., 476, 115315. https://doi.org/10.1016/j.jsv.2020.115315.   DOI
34 Tran-Ngoc, H., Khatir, S., De Roeck, G., Bui-Tien, T., Nguyen-Ngoc, L. and Abdel Wahab, M. (2018), "Model updating for Nam O bridge using particle swarm optimization algorithm and genetic algorithm", Sensors, 18(12), 4131. https://doi.org/10.3390/s18124131.   DOI
35 Vu-Bac, N., Lahmer, T., Zhuang, X., Nguyen-Thoi, T. and Rabczuk, T. (2016), "A software framework for probabilistic sensitivity analysis for computationally expensive models", Adv. Eng. Softw., 100, 19-31. https://doi.org/10.1016/j.advengsoft.2016.06.005   DOI
36 Wan, H.P. and Wei-Xin, R. (2015), "Parameter selection in finiteelement-model updating by global sensitivity analysis using Gaussian process metamodel", J. Struct. Eng., 141(6), 04014164. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001108.   DOI
37 Hamdia, K.M., Ghasemi, H., Zhuang, X., Alajlan, N. and Rabczuk, T. (2018), "Sensitivity and uncertainty analysis for flexoelectric nanostructures", Comput. Methods Appl. Mech. Eng., 337, 95-109. https://doi.org/10.1016/j.cma.2018.03.016.   DOI
38 Hamdia, K.M., Silani, M., Zhuang, X., He, P. and Rabczuk, T. (2017), "Stochastic analysis of the fracture toughness of polymeric nanoparticle composites using polynomial chaos expansions", Int. J. Fract., 206, 215-227. https://doi.org/10.1007/s10704-017-0210-6.   DOI
39 Hoa, T.N., Khatir, S., De Roeck, G., Long, N.N., Thanh, B.T. and Wahab, M.A. (2020), "An efficient approach for model updating of a large-scale cable-stayed bridge using ambient vibration measurements combined with a hybrid metaheuristic search algorithm", Smart Struct. Syst., Int. J., 25(4), 487-499. https://doi.org/10.12989/sss.2020.25.4.487
40 Islam, M.S., Do, J. and Kim, D. (2018), "Vibration control of offshore wind turbine using RSM and PSO-optimized Stockbridge damper under the earthquakes", Smart Struct. Syst., Int. J., 21(2), 207-223. https://doi.org/10.12989/sss.2018.21.2.207.
41 Ghiasi, R. and Ghasemi, M.R. (2018), "Optimization-based method for structural damage detection with consideration of uncertainties- a comparative study", Smart Struct. Syst., Int. J, 22(5), 561-574. https://doi.org/10.12989/sss.2018.22.5.561.
42 Kennedy, J. and Eberhart, R. (1995), "Particle swarm optimization", Proceedings of ICNN'95 - International Conference on Neural Networks, Perth, WA, Australia, December.