
International Journal of Advanced Smart Convergence Vol.6 No.1 26-31 (2017) 

https://doi.org/10.7236/IJASC.2017.6.1.26  

 

 
 

A Case Study of a Navigator Optimization Process 
 

 

Doosan Cho
 

 

Electrical & Electronic Engineering, Sunchon National University, Korea 

dscho@scnu.ac.kr 

 

Abstract 

 When mobile navigator device accesses data randomly, the cache memory performance is rapidly 

deteriorated due to low memory access locality. For instance, GPS (General Positioning System) of 

navigator program for automobiles or drones, that are currently in common use, uses data from 32 satellites 

and computes current position of a receiver. This computation of positioning is the major part of GPS which 

accounts more than 50% computation in the program. In this computation task, the satellite signals are 

received in real time and stored in buffer memories. At this task, since necessary data cannot be sequentially 

stored, the data is read and used at random. This data accessing patterns are generated randomly, thus, 

memory system performance is worse by low data locality. As a result, it is difficult to process data in real 

time due to low data localization. Improving the low memory access locality inherited on the algorithms of 

conventional communication applications requires a certain optimization technique to solve this problem. In 

this study, we try to do optimizations with data and memory to improve the locality problem. In experiment, 

we show that our case study can improve processing speed of core computation and improve our overall 

system performance by 14%. 

 

Keywords: Optimization, Low Power, Embedded System, Data Memory, Performance 

 

1. Introduction 

A real-time embedded system for normal communication applications has a small-sized hardware cache (2 

to 16 KB), and randomly accesses data of a size more than several hundred times larger. As a result, cache 

memory utilization (hit-ratio) is low, making it difficult to develop a successful system [1]. In this study, we 

aim to improve system performance by solving low data locality problem for GPS applications of navigators. 

Today, many embedded systems are designed and built with limited hardware resources. Instead of 

lowering the hardware cost of the system in order to increase price competitiveness, the burden of meeting 

the required performance criterion is on a software system. One of the most important aspects of improving 

performance through software optimization is optimizing memory-related modules, and the most effective 

technique is to increase hardware cache utilization. The proposed method is a new approach and differs from 

Manuscript Received: Feb. 15, 2017 / Revised: Feb. 25, 2017 / Accepted: Mar. 6, 2017 

Corresponding Author: dscho@scnu.ac.kr  

Tel: +82-61-750-3577, Fax: +82-61-750-3570 

Department of Electrical & Electronic Engineering, Sunchon National University, Korea 

 

IJASC 17-1-4 



A Case Study of a Navigator Optimization Process                                                               27 

 

existing methods. The techniques we tried in this study are optimized for GPS applications and are 

specifically applied to a certain memory system. Therefore, more performance improvement than existing 

techniques can be obtained. It is developed specifically for the application and memory hierarchy. 

 

 2. Background 

Car or drone navigation refers to an advanced transportation system that reduces traffic congestion and 

creates a safe and pleasant driving environment by collecting, analyzing, and providing information on the 

current location of the vehicle, the traffic situation, and the traffic situation information of the driver. This 

systems are closely related to ITS (Intelligent Transportation Systems) and are a part of the ITS system. In 

the early stage of ITS technology development, there has been no direct technology development related to 

drone/car navigation as well as related fields. Recently, researches on the navigation focusing on vehicles 

have been actively conducted. A navigation is a combination of GPS technology and mobile communication 

technology. Its information provision service is a field that can overcome limitations of ITS related services 

that are difficult to provide a wide range of services temporarily, and actual technology development and 

commercialization are actively performed.  

Since the internal system of the navigation terminal is composed of the main body, the wireless 

transmission/reception system (GPS, wireless modem part, other wireless transmission/reception part), 

navigation part, peripheral device, etc. The main role of the terminal module is as follows. 

O Body: Controlling S/W of each module 

O Wireless transmit/receive system 

- GPS: Vehicle location confirmation (route search and emergency location notification) 

- Wireless modem part: Transmitter role (send/receive information from service center) 

- Other wireless transmission/reception: receiver role (traffic information acquisition) 

O Navigation part: Path search light (display current position and route) 

O Peripherals: Multimedia, MP3, external interface, etc. 

Fundamentally, GPS uses the principle of triangulation. In a typical triangulation, the location of an 

unknown point is determined by measuring the size of the two angles and the length of the sides, except for 

that point. Determining the location of an unknown point by measuring the length of two sides is the 

difference from the classic triangulation. The distance from the satellite to the receiver is calculated by 

measuring the time difference between the point of time of the sign signal generated at each satellite and the 

point of time of reception, and then multiplying by the speed of light (distance = speed of light × elapsed 

time). In order to determine the position of the receiver based on the position of the satellite, it is necessary 

to know the exact position of the satellite in addition to the distance data. To calculate the position of the 

satellite, a trajectory force transmitted from the GPS satellite is used. 

To calculate the position of a user on three dimensions, we need to determine three unknowns x, y, z 

mathematically, and we need to get signals from at least three satellites because we need three equations. 

However, to measure the elapsed time to calculate the distance between the GPS satellite and the user, the 

time must be synchronized with the satellite and the receiving period. Multiplying the speed of light with a 

small time error will result in a great distance error. However, satellite clocks have very accurate atomic 



28                                       International Journal of Advanced Smart Convergence Vol.6 No.1 26-31 (2017) 
 

clocks, but because receivers use cheap clocks, it is virtually impossible to physically synchronize the two 

clocks exactly. This problem is mathematically overcome by the receiver. That is, the receiver computes x, y, 

and z up to time t. T to synchronize the satellite clock with the receiver clock. Here, the number of unknowns 

to be determined is increased to four signal of satellite, and equations of four or more are required. In other 

words, it is necessary to receive signals from at least four or more satellites in order to accurately calculate 

the position of the user. 
 

 

Figure 1. The workflow of GPS 
 

3. Platform 
 

 

Figure 2. ARM920T Architecture 

 

      foo(){ 

         for(i = 0 ; i < n ; i ++) 

            print map[rand*65536] 

Figure 3. An example of main code 



A Case Study of a Navigator Optimization Process                                                               29 

 

ARM920T is used as our target system platform. The ARM9 is a 5-stage integer pipeline, with I-CACHE 

and D-CACHE of Harvard architecture, each 16KB. Unlike the von Neumann architecture, the Harvard 

architecture is more advantageous for certain applications because the cache memory is divided into I-cache 

and D-cache. Figure 2 shows the ARM920T diagram. The OS uses WinCE 6.0 and MS ARM9 compiler. 

ARM9 shares the same instruction set with ARM7, and this uses TLB for each cache. It operates with 5 stage 

pipelined structure. Figure 3 shows the major computation part of positioning. The array map[rand*65536] 

represents random memory access in the computation. The program used in this case study is a car GPS 

application that accesses data of 256KB size in a random pattern. The data used at one time is 16 times larger 

than the cache size. Figure 3 shows the main code used for memory accesses. 

In the ARM architecture, cache memory is very important. A cache is one that allows faster processing by 

a faster buffer memory in the middle to access slower memory [2]. The faster memory is called the cache 

memory. Depending on hierarchy, capacity, and operation policy of ARM architecture, system performance 

may vary by as much as 200%. 

 

3. Locality Analysis of Data Accesses 

To improve cache performance, we first need to determine the correlation between data access locality and 

performance. To understand this, we used '%' for (modulo operation) with an industry code and real 

navigator system board [3][4]. That is, the locality of the data used is artificially increased, and the degree of 

performance improvement possible is confirmed. 

Figure 4 shows the code with modulo „%‟ operation. In the experiment, each effect was measured by 

changing the random access coverage size of m to 3,10,100,1000,5000. If the modulo „%‟ operation is not 

applied, the processing time requires 1.67 seconds. This means that the current GPS system can process 1.67 

seconds of data for 1 second. In order to operate the implemented GPS system normally, the performance 

should be 3 seconds or more. In conclusion, in order to achieve the target performance, it is necessary to 

obtain a localization level of "modulo 3" or higher, which is impossible with a single technique, since it 

cannot reduce data coverage to 3 from 65536. 

 

   foo(){ 

      for(i = 0 ; i < n ; i ++) 

               print map[(rand*65536)%m] } 

Figure 4. An optimization with a modulo operation 

 

Table 1. Footprint of data processing throughput by increasing Modulation size 

Mod operation with 3 2.66second(data processing throughput) 

Mod operation with 10 2.68 

Mod operation with 100 2.62 

Mod operation with 1000 2.38 

Mod operation with 5000 2.02 

No Mod operation 1.67 



30                                       International Journal of Advanced Smart Convergence Vol.6 No.1 26-31 (2017) 
 

4. Locality improvement by data compressing 

In order to obtain the required performance at a lower cost than the algorithm modification of the GPS 

application, the data is compressed. By reducing the size of the data, it is possible to improve the locality and 

improve the performance of the cache system. 

Lossless technique is required for data compression. In the case of lossy compression, the total cost of 

performance can be reduced due to the increase in the amount of recovery computation. The proposed 

technique is as follows. 

The data used in normal communication applications is composed of tables (ex, routing table, ip table, 

location table, etc.). A table can be divided into two fields, which can be divided into an address field and a 

value field that contain specific data. In case of GPS code, it uses the table that searches the location based 

on the data received from the satellite and uses the encoded address when searching for the location. 

Therefore, when the address field and the data field are classified and the value is tested, it can be confirmed 

that there are many overlapping parts. It is a phenomenon that occurs due to the characteristic of searching a 

position obtained by receiving various index values from various satellites. This phenomenon is called value 

locality [5]. In this case, it is possible to compress the entire data size by separating the address and value 

tables. 

For example, in the case of the GPS code, it is confirmed that the table used is composed of 617 actually 

divided values among 65535 data. Therefore, the data table can be divided into two 16-bit address tables 

(Address Table: 65536 2byte array, 128kbyte) and 32bit data table (617 4byte array, 2.5kbyte). The total 

capacity of both data is 130.5kbytes, which can be reduced by about 1/2.   

 

    foo(){ 

      for(i = 0 ; i < n ; i ++) 

           print data[address[rand*65536]] } 

 

Figure 5. An optimization code (with 130KB table) 

 

As shown in Figure 4, the memory accesses are increased one time in the address table and one time in the 

value table. However, since the size of the total data is reduced by half, the locality is increased. An average 

increase of 14% from 1.67 seconds to 1.87 seconds. One of the applied techniques has the biggest 

improvement effect. 

 
5. Conclusion 
 

In a real-time embedded system development, a key part in determining system performance is related to 

memory access latency [6][7]. In design step, this problem can be changed by hardware, but it is not easy to 

improve the memory system performance at the time when the hardware part development is completed. As 

a result, various compiler optimization techniques can be used to improve software performance, but there is 

a limit to performance improvement without the support of an algorithm side. In this study, we analyze the 

characteristics of the data used as the input of the target application and experimentally show that the 

performance of the whole system can be improved by reconstructing the data to improve the locality. 

 



A Case Study of a Navigator Optimization Process                                                               31 

 

Acknowledgement 

This research was supported by Unmanned Vehicles Advanced Core Technology Research and 

Development Program through the National Research  Foundation of Korea(NRF), Unmanned Vehicle 

Advanced Research Center(UVARC) funded by the Ministry of Science, ICT and Future Planning, the 

Republic of Korea. (No. 2016M1B3A1A03937725). 

 
References 
  

[1] Wm. A. Wulf and Sally A. McKee, "Hitting the Memory Wall: Implications of the Obvious," ACM SIGARCH 

Computer Architecture News, vol.23, no.1, pp.20-24, Mar. 1995. 

[2] John L. Hennessy and David A. Patterson, "COMPUTER ARCHITECTURE A Quantiative Approach," 5th 

edition, Morgan Kaufmann, pp.72-78, Sep. 2011. 

[3] ARM920T Technical Reference Manual, 1 edition, 2001.  

[online] http://www.atmel.com/Images/ARM_920T_TRM.pdf  

[4] K. Hazelwood, and A. Klauser, "A dynamic binary instrumentation engine for the ARM architecture," Compilers, 

Architecture and Synthesis for Embedded Systems Conference, Oct. 2006.  

[5] Jun Yang, Rajiv Gupta, “Frequent value locality and its applications,” ACM TECS, 2002. 

[6] Carr, S., McKinley, K. S., & Tseng, C. W., “Compiler Optimizations for Improving Data Locality,” ACM 

SIGPLAN Notices, 29(11), 252-262, 1994. 

[7] Kathryn S. Mckinley, Steve Carr, Chau Wen Tseng, “Improving Data Locality with Loop Transformations,” 

ACM Transactions on Programming Languages and Systems 18(4), 424-453, 1996. 


