• Title/Summary/Keyword: Real-time Application

Search Result 3,458, Processing Time 0.033 seconds

Design and Fabrication of Aspherical Optical System for Augmented Reality Application (증강 현실 응용을 위한 비구면 광학계 설계 및 제작)

  • Chang-Won Shin;Hyeong-Chang Ham;Ae-Jin Park;Hee-Jae Jung;Kang-Hwi Lee;Chi-Won Choi
    • Korean Journal of Optics and Photonics
    • /
    • v.34 no.4
    • /
    • pp.157-169
    • /
    • 2023
  • Augmented reality (AR) using a head mounted display (HMD) is used in various fields such as military, medicine, manufacturing, gaming, and education. In this paper, we discuss the design and fabrication of the AR optical system, which is most essential for HMD. The AR optical system for HMD requires a wide transparent area in which the augmented image of the display and the real world can be viewed at the same time. To this end, an AR optical system was designed and manufactured by dividing it into three parts according to each characteristic. Also, the refractive index of the ultra-violet (UV) adhesive layer required to make the three optical systems into one complete AR optical system was considered from the design stage to minimize the optical path shift phenomenon when the input light source passes through the UV adhesive layer. In addition, when designing the AR optical system, two aspheric surfaces were used to compensate for off-axis aberration and to be suitable for mass production. Finally, for HMD mass production, an aspheric AR optical system with a thickness of 11 mm, a diagonal field of view of 40°, and a weight of 11.3 g was designed and manufactured.

The study of security management for application of blockchain technology in the Internet of Things environment (Focusing on security cases in autonomous vehicles including driving environment sensing data and occupant data) (사물인터넷 환경에서 블록체인 기술을 이용한 보안 관리에 관한 소고(주행 환경 센싱 데이터 및 탑승자 데이터를 포함한 자율주행차량에서의 보안 사례를 중심으로))

  • Jang Mook KANG
    • Convergence Security Journal
    • /
    • v.22 no.4
    • /
    • pp.161-168
    • /
    • 2022
  • After the corona virus, as non-face-to-face services are activated, domain services that guarantee integrity by embedding sensing information of the Internet of Things (IoT) with block chain technology are expanding. For example, in areas such as safety and security using CCTV, a process is required to safely update firmware in real time and to confirm that there is no malicious intrusion. In the existing safe security processing procedures, in many cases, the person in charge performing official duties carried a USB device and directly updated the firmware. However, when private blockchain technology such as Hyperledger is used, the convenience and work efficiency of the Internet of Things environment can be expected to increase. This article describes scenarios in how to prevent vulnerabilities in the operating environment of various customers such as firmware updates and device changes in a non-face-to-face environment. In particular, we introduced the optimal blockchain technique for the Internet of Things (IoT), which is easily exposed to malicious security risks such as hacking and information leakage. In this article, we tried to present the necessity and implications of security management that guarantees integrity through operation applying block chain technology in the increasingly expanding Internet of Things environment. If this is used, it is expected to gain insight into how to apply the blockchain technique to guidelines for strengthening the security of the IoT environment in the future.

Amelioration of DSS-induced colitis in mice by TNF-α-stimulated mesenchymal stem cells derived from feline adipose tissue via COX-2/PGE2 activation

  • Kyeongbo Kim;Ju-Hyun An;Su-Min Park;GaHyun Lim;Kyung-Won Seo;Hwa-Young Youn
    • Journal of Veterinary Science
    • /
    • v.24 no.4
    • /
    • pp.52.1-52.13
    • /
    • 2023
  • Background: Mesenchymal stem cells (MSCs) have been investigated as therapeutic agents for inflammatory bowel disease (IBD). Stimulation of MSCs with pro-inflammatory cytokines is an approach to enhance their immunomodulatory effects. However, further investigation is required to support their application in immune-mediated disorders and companion animals. Objectives: This study aimed to assess the therapeutic effect of tumor necrosis factor (TNF)-α-stimulated feline adipose tissue-derived MSCs (fAT-MSCs) in a dextran sulfate sodium (DSS)-induced colitis mouse model. Methods: Colitis mice was made by drinking water with 3% DSS and fAT-MSCs were injected intraperitoneally. Colons were collected on day 10. The severity of the disease was evaluated and compared. Raw 264.7 cells were cultured with the conditioned medium to determine the mechanism, using quantitative real-time polymerase chain reaction and enzyme-linked immunosorbent assay. Results: TNF-α-stimulated fAT-MSCs more improved severity of DSS-induced colitis in disease activity, colon length, histologic score, and inflammatory cytokine. In sectionized colon tissues, the group comprising TNF-α-stimulated fAT-MSCs had higher proportion of CD11b+CD206+ macrophages than in the other groups. In vitro, TNF-α-stimulation increased cyclooxygenase-2 (COX-2) expression and prostaglandin E2 (PGE2) secretion from fAT-MSCs. The conditioned medium from TNF-α-stimulated fAT-MSCs enhanced the expression of interleukin-10 and arginase-1 in LPS-activated Raw 264.7 cells. Conclusions: These results represent that TNF-α-stimulated fat-mscs ameliorate the inflamed colon more effectively. Furthermore, we demonstrated that the effectiveness was interlinked with the COX-2/PGE2 pathway.

Development of Multi-channel Detector of X-ray Backscatter Imaging (후방산란 엑스선 영상획득을 위한 다채널 검출기 개발)

  • Lee, Jeonghee;Park, Jongwon;Choi, Yungchul;Lim, Chang Hwy;Lee, Sangheon;Park, Jaeheung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.245-247
    • /
    • 2022
  • Backscattered x-ray imaging is a technology capable of acquiring an image inside an irradiated object by measuring X-rays scattered from an object. For image acquisition, the system must include an X-ray generator and a detection system for measuring scattered x-rays. The imaging device must acquire a real-time signal at sampling intervals for x-rays generated by passing through a high-speed rotating collimator, and for this purpose, a high-speed signal acquisition device is required. We developed a high-speed multi-channel signal acquisition device for converting and transmitting signals generated by the sensor unit composed of a large-area plastic scintillator and a photomultiplier tube. The developed detector is a system capable of acquiring signals at intervals of at least 15u seconds and converting and transmitting signals of up to 6 channels. And a system includes remote control functions such as high voltage, signal gain, and low level discrimination for individual calibration of each sensor. Currently, we are conducting an application test for image acquisition under various conditions.

  • PDF

Application of Near-Infrared Spectroscopy in Neurological Disorders: Especially in Orthostatic Intolerance (신경계 질환에서 근적외선분광분석법의 적용: 기립불내증을 중심으로)

  • Kim, Yoo Hwan;Paik, Seung-ho;Phillips V, Zephaniah;Seok, Hung Youl;Jeon, Nam-Joon;Kim, Beop-Min;Kim, Byung-Jo
    • Journal of the Korean neurological association
    • /
    • v.35 no.1
    • /
    • pp.8-15
    • /
    • 2017
  • Near-infrared spectroscopy (NIRS), a noninvasive optical method, utilizes the characteristic absorption spectra of hemoglobin in the near-infrared range to provide information on cerebral hemodynamic changes in various clinical situations. NIRS monitoring have been used mainly to detect reduced perfusion of the brain during orthostatic stress for three common forms of orthostatic intolerance (OI); orthostatic hypotension, neurally mediated syncope, and postural orthostatic tachycardia syndrome. Autonomic function testing is an important diagnostic test to assess their autonomic nervous systems for patients with symptom of OI. However, these techniques cannot measure dynamic changes in cerebral blood flow. There are many experimentations about study of NIRS to reveal the pathophysiology of patients with OI. Research using NIRS in other neurologic diseases (stroke, epilepsy and migraine) are ongoing. NIRS have been experimentally used in all stages of stroke and may complement the established diagnostic and monitoring tools. NIRS also provide pathophysiological approach during rehabilitation and secondary prevention of stroke. The hemodynamic response to seizure has long been a topic for discussion in association with the neuronal damage resulting from convulsion. One critical issue when unpredictable events are to be detected is how continuous NIRS data are analyzed. Besides, NIRS studies targeting pathophysiological aspects of migraine may contribute to a deeper understanding of mechanisms relating to aura of migraine. NIRS monitoring may play an important role to trend regional hemodynamic distribution of flow in real time and also highlights the pathophysiology and management of not only patients with OI symptoms but also those with various neurologic diseases.

Performance Analysis of Simultaneous Liftable 3D Concrete Printing Based on Statistical Analysis Algorithm (통계분석 알고리즘 프로그램을 활용한 동시 인상 3D 콘크리트 프린팅의 성능 분석)

  • Yoon-Chul Kim;Sung-Jo Kim;Bongsik Kim;Yongsoo Ji;Tong-Seok Han
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.6
    • /
    • pp.407-414
    • /
    • 2023
  • In this study, an automated jack-up system, applicable to various fields, was employed for 3D concrete printing and developed as a simultaneous liftable 3D concrete printing system. This developed printing system enables safe and precise jack-up by monitoring the measured jack-up distance using Pearson correlation coefficient analysis and a hydraulic system with interquartile range analysis in real-time during 3D concrete printing operations. It is possible to secure the quality of 3D concrete printing structures, which is essential for expanding the application of 3D concrete printing to construct larger structures. Specimens were printed using both conventional 3D concrete printing and simultaneous liftable 3D concrete printing to evaluate the system performance. The printed specimens were investigated using a 3D scanner. The layer-wise diameter and angle of intersection of the scanned specimens were measured, and an analysis was performed to verify the advantages of the simultaneous liftable 3D concrete printing.

A Study on Mitigating the Disparity in Public Transportation Information Usage among the Elderly through Expert Delphi Survey (전문가 델파이 조사를 통한 고령층의 대중교통 정보이용 격차 해소방안 연구)

  • Miyoung BHIN;Seulki SON;Hyunju KIM;Chaewon LEE
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.5
    • /
    • pp.127-136
    • /
    • 2023
  • Gyeonggi Province has established a bus information system to provide real-time bus arrival information, aiming to make bus usage convenient for its residents. While the Gyeonggi bus information system is becoming more advanced through the application of IT technology, there are still information-vulnerable groups finding it difficult to use. In particular, the elderly have a low level of digital information literacy and habe difficulty using it. In this regard, this study aims to address the information usage disparity among the elderly in public transportation by utilizing expert in-depth survey methodology known as the Delphi technique. The study classified the policy initiatives that Gyeonggi Province should undertake into three categories: user education and expanded promotion, technological development and dissemination, and providing convenient usage environment. Through two rounds of surveys, the study assessed the priority of ten specific sub-tasks within these categories. Additionally, it gathered opinions on the effectiveness and feasibility of each item. The results yielded prioritization and evaluation of effectiveness and feasibility for nine sub-tasks. Based on these outcomes, the study proposed future projects that Gyeonggi Province should implement to address the information disparity among the elderly, offering a comprehensive approach to bridge the gap.

A Study on Efficient AI Model Drift Detection Methods for MLOps (MLOps를 위한 효율적인 AI 모델 드리프트 탐지방안 연구)

  • Ye-eun Lee;Tae-jin Lee
    • Journal of Internet Computing and Services
    • /
    • v.24 no.5
    • /
    • pp.17-27
    • /
    • 2023
  • Today, as AI (Artificial Intelligence) technology develops and its practicality increases, it is widely used in various application fields in real life. At this time, the AI model is basically learned based on various statistical properties of the learning data and then distributed to the system, but unexpected changes in the data in a rapidly changing data situation cause a decrease in the model's performance. In particular, as it becomes important to find drift signals of deployed models in order to respond to new and unknown attacks that are constantly created in the security field, the need for lifecycle management of the entire model is gradually emerging. In general, it can be detected through performance changes in the model's accuracy and error rate (loss), but there are limitations in the usage environment in that an actual label for the model prediction result is required, and the detection of the point where the actual drift occurs is uncertain. there is. This is because the model's error rate is greatly influenced by various external environmental factors, model selection and parameter settings, and new input data, so it is necessary to precisely determine when actual drift in the data occurs based only on the corresponding value. There are limits to this. Therefore, this paper proposes a method to detect when actual drift occurs through an Anomaly analysis technique based on XAI (eXplainable Artificial Intelligence). As a result of testing a classification model that detects DGA (Domain Generation Algorithm), anomaly scores were extracted through the SHAP(Shapley Additive exPlanations) Value of the data after distribution, and as a result, it was confirmed that efficient drift point detection was possible.

A Study on the Improvement of Geriatric Sarcopenia by Non-face-to-face Intervention Method (비대면 중재 방법에 따른 노인성 근감소증의 개선에 대한 연구)

  • Myung-Chul Kim;Ju-Hyung Park;Min-Ji Kwon;Beom-Seok Kim;Min-Kyung Park;Seo-Yoon Park;Sung-Jin Park;;Si-Yeon Park;Jung-Hu Park;Joon-Woo Song;Jong-Hyun Yu;Jung-Hyun Lee;Ji-Hyung Lee;Hae-In Kim
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.12 no.1
    • /
    • pp.49-62
    • /
    • 2024
  • Purpose : This study was conducted to compare two non-face-to-face exercise interventions depending on whether mobile applications and wearable exercise aids are used to find out which interventions are more effective in improving senile sarcopenia. Ultimately, it was conducted to provide basic data for developing non-face-to-face intervention methods to improve sarcopenia. Method : In this study, 18 elderly sarcopenia and possible sarcopenia aged 65 or older were randomly assigned to the digital and self-exercise intervention groups. The digital exercise intervention group performed eight exercise programs with mobile applications and wearable exercise aids to record and manage the elderly performing the programs in real time. And the self-exercise intervention group performed the same program on its own as implemented in the digital exercise group. The intervention was applied for 8 weeks, and before and after the intervention, sarcopenia evaluation and physical function evaluation were performed. Results : In the digital exercise intervention group, arm muscle mass, skeletal muscle index, SPPB, 5TSTS, and BBS were improved, and in the self-exercise intervention group, grip strength, SPPB, 5TSTS, and BBS were improved. Conclusion : It was confirmed that both groups are effective in improving physical performance and physical function, the digital exercise intervention is effective in improving muscle mass and self-exercise intervention is effective in improving muscle strength. Therefore, this study proposes to apply intervention methods separately according to the indicators to improve and prevent sarcopenia, and also simplify the instructions of applications used to improve sarcopenia and to create an environment where users can be trained regularly on how to use it. And, In the future, studies for the development of devices to be designed to help non-face-to-face exercise interventions or studies on the differences between face-to-face and non-face-to-face exercise interventions should be conducted in terms of the effect of improving sarcopenia.

Enhancing Small-Scale Construction Sites Safety through a Risk-Based Safety Perception Model (소규모 건설현장의 위험성평가를 통한 안전인지 모델 연구)

  • Kim, Han-Eol;Lim, Hyoung-Chul
    • Journal of the Korea Institute of Building Construction
    • /
    • v.24 no.1
    • /
    • pp.97-108
    • /
    • 2024
  • This research delves into the escalating concerns of accidents and fatalities in the construction industry over the recent five-year period, focusing on the development of a Safety Perception Model to augment safety measures. Given the rising percentage of elderly workers and the concurrent drop in productivity within the sector, there is a pronounced need for leveraging Fourth Industrial Revolution technologies to bolster safety protocols. The study comprises an in-depth analysis of statistical data regarding construction-related fatalities, aiming to shed light on prevailing safety challenges. Central to this investigation is the formulation of a Safety Perception Model tailored for small-scale construction projects. This model facilitates the quantification of safety risks by evaluating safety grades across construction sites. Utilizing the DWM1000 module, among an array of wireless communication technologies, the model enables the real-time tracking of worker locations and the assessment of safety levels on-site. Furthermore, the deployment of a safety management system allows for the evaluation of risk levels associated with individual workers. Aggregating these data points, the Safety Climate Index(SCLI) is calculated to depict the daily, weekly, and monthly safety climate of the site, thereby offering insights into the effectiveness of implemented safety measures and identifying areas for continuous improvement. This study is anticipated to significantly contribute to the systematic enhancement of safety and the prevention of accidents on construction sites, fostering an environment of improved productivity and strengthened safety culture through the application of the Safety Perception Model.