• Title/Summary/Keyword: Real-Time Update

Search Result 270, Processing Time 0.021 seconds

Comparison and Performance Validation of On-line Aerial Triangulation Algorithms for Real-time Image Georeferencing (실시간 영상 지오레퍼런싱을 위한 온라인 항공삼각측량 알고리즘의 비교 및 성능 검증)

  • Choi, Kyoung-Ah;Lee, Im-Pyeong
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.1
    • /
    • pp.55-67
    • /
    • 2012
  • Real-time image georeferencing is required to generate spatial information rapidly from the image sequences acquired by multi-sensor systems. To complement the performance of position/attitude sensors and process in real-time, we should employ on-line aerial triangulation based on a sequential estimation algorithm. In this study, we thus attempt to derive an efficient on-line aerial triangulation algorithm for real-time georeferencing of image sequences. We implemented on-line aerial triangulation using the existing Given transformation update algorithm, and a new inverse normal matrix update algorithm based on observation classification, respectively. To compare the performance of two algorithms in terms of the accuracy and processing time, we applied these algorithms to simulated airborne multi-sensory data. The experimental results indicate that the inverse normal matrix update algorithm shows 40 % higher accuracy in the estimated ground point coordinates and eight times faster processing speed comparing to the Given transformation update algorithm. Therefore, the inverse normal matrix update algorithm is more appropriate for the real-time image georeferencing.

Implementation of Real Time 3 channel Transmission System Using ECG Data Compression Algorithm by Max-Min Slope Update (최대 및 최소 기울기 갱신에 의한 ECG 압축 알고리듬을 이용한 실시간 3채널 전송시스템 구현)

  • 조진호;김명남
    • Journal of Biomedical Engineering Research
    • /
    • v.16 no.3
    • /
    • pp.271-278
    • /
    • 1995
  • An ECG data compression algorithM using max-min slope update is proposed and a real time 3 channel ECG transmission system is implemented using the proposed algorithm. In order to effectively compress ECG data, we compare a threshold value with the max-min slope difference (MMSD) which is updated at each sample values. If this MMSD value is smaller than the threshold value, then the data is compressed. Conversely, when the MMSD value is larger than threshold value, the data is transmitted after storing the value and the length between the data which is beyond previous threshold level. As a result, it can accurately compress both the region of QRS, P, and T wave that has fast-changing and the region of the base line that slope is changing slow. Therefore, it Is possible to enhance the compression rate and the percent roms difference. In addition, because of the simplicity, this algorithm is more suitable for real-time implementation.

  • PDF

Laser Spot Detection Using Robust Dictionary Construction and Update

  • Wang, Zhihua;Piao, Yongri;Jin, Minglu
    • Journal of information and communication convergence engineering
    • /
    • v.13 no.1
    • /
    • pp.42-49
    • /
    • 2015
  • In laser pointer interaction systems, laser spot detection is one of the most important technologies, and most of the challenges in this area are related to the varying backgrounds, and the real-time performance of the interaction system. In this paper, we present a robust dictionary construction and update algorithm based on a sparse model of background subtraction. In order to control dynamic backgrounds, first, we determine whether there is a change in the backgrounds; if this is true, the new background can be directly added to the dictionary configurations; otherwise, we run an online cumulative average on the backgrounds to update the dictionary. The proposed dictionary construction and update algorithm for laser spot detection, is robust to the varying backgrounds and noises, and can be implemented in real time. A large number of experimental results have confirmed the superior performance of the proposed method in terms of the detection error and real-time implementation.

CNN based Sound Event Detection Method using NMF Preprocessing in Background Noise Environment

  • Jang, Bumsuk;Lee, Sang-Hyun
    • International journal of advanced smart convergence
    • /
    • v.9 no.2
    • /
    • pp.20-27
    • /
    • 2020
  • Sound event detection in real-world environments suffers from the interference of non-stationary and time-varying noise. This paper presents an adaptive noise reduction method for sound event detection based on non-negative matrix factorization (NMF). In this paper, we proposed a deep learning model that integrates Convolution Neural Network (CNN) with Non-Negative Matrix Factorization (NMF). To improve the separation quality of the NMF, it includes noise update technique that learns and adapts the characteristics of the current noise in real time. The noise update technique analyzes the sparsity and activity of the noise bias at the present time and decides the update training based on the noise candidate group obtained every frame in the previous noise reduction stage. Noise bias ranks selected as candidates for update training are updated in real time with discrimination NMF training. This NMF was applied to CNN and Hidden Markov Model(HMM) to achieve improvement for performance of sound event detection. Since CNN has a more obvious performance improvement effect, it can be widely used in sound source based CNN algorithm.

Combining Empirical Feature Map and Conjugate Least Squares Support Vector Machine for Real Time Image Recognition : Research with Jade Solution Company

  • Kim, Byung Joo
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.9 no.1
    • /
    • pp.9-17
    • /
    • 2017
  • This paper describes a process of developing commercial real time image recognition system with company. In this paper we will make a system that is combining an empirical kernel map method and conjugate least squares support vector machine in order to represent images in a low-dimensional subspace for real time image recognition. In the traditional approach calculating these eigenspace models, known as traditional PCA method, model must capture all the images needed to build the internal representation. Updating of the existing eigenspace is only possible when all the images must be kept in order to update the eigenspace, requiring a lot of storage capability. Proposed method allows discarding the acquired images immediately after the update. By experimental results we can show that empirical kernel map has similar accuracy compare to traditional batch way eigenspace method and more efficient in memory requirement than traditional one. This experimental result shows that proposed model is suitable for commercial real time image recognition system.

A Study on Update of Road Network Using Graph Data Structure (그래프 구조를 이용한 도로 네트워크 갱신 방안)

  • Kang, Woo-bin;Park, Soo-hong;Lee, Won-gi
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.1
    • /
    • pp.193-202
    • /
    • 2021
  • The update of a high-precision map was carried out by modifying the geometric information using ortho-images or point-cloud data as the source data and then reconstructing the relationship between the spatial objects. These series of processes take considerable time to process the geometric information, making it difficult to apply real-time route planning to a vehicle quickly. Therefore, this study proposed a method to update the road network for route planning using a graph data structure and storage type of graph data structure considering the characteristics of the road network. The proposed method was also reviewed to assess the feasibility of real-time route information transmission by applying it to actual road data.

A Jacobian Update-Free Newton's Method for Efficient Real-Time Vehicle Simulation (효율적인 실시간 차량 시뮬레이션을 위한 자코비안 갱신이 불필요한 뉴턴 적분방법)

  • Kang, Jong Su;Lim, Jun Hyun;Bae, Dae Sung
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.4
    • /
    • pp.337-344
    • /
    • 2014
  • While implicit integration methods such as Newton's method have excellent stability for the analysis of stiff and constrained mechanical systems, they have the drawback that the evaluation and LU-factorization of the system Jacobian matrix required at every time step are time-consuming. This paper proposes a Jacobian update-free Newton's method in order to overcome these defects. Because the motions of all bodies in a vehicle model are limited with respect to the chassis body, the equations are formulated with respect to the moving chassis-body reference frame instead of the fixed inertial reference frame. This makes the system Jacobian remain nearly constant, and thus allows the Newton's method to be free from the Jacobian update. Consequently, the proposed method significantly decreases the computational cost of the vehicle dynamic simulation. This paper provides detailed generalized formulation procedures for the equations of motion, constraint equations, and generalized forces of the proposed method.

An Algorithm to Update a Codebook Using a Neural Net (신경회로망을 이용한 코드북의 순차적 갱신 알고리듬)

  • 정해묵;이주희;이충웅
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.11
    • /
    • pp.1857-1866
    • /
    • 1989
  • In this paper, an algorithm to update a codebook using a neural network in consecutive images, is proposed. With the Kohonen's self-organizing feature map, we adopt the iterative technique to update a centroid of each cluster instead of the unsupervised learning technique. Because the performance of this neural model is comparable to that of the LBG algorithm, it is possible to update the codebooks of consecutive frames sequentially in TV and to realize the hardwadre on the real-time implementation basis.

  • PDF

A Design and Implementation of Synchronization System for Mobile u-GIS (모바일 u-GIS를 위한 동기화 시스템 설계 및 구현)

  • Kim, Hong-Ki;Kim, Dong-Hyun;Cho, Dae-Soo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.05a
    • /
    • pp.588-591
    • /
    • 2009
  • In ubiquitous computing GIS services, it is possible to use the spatio-temporal data anytime through the mobile device. GIS services regularly update use the latest spatio-temporal data to provide the most suitable services. For this situation, update data is distributed to CD or wired networks update services. However, this method has problem to propagate update data to users as taking long time. In this paper, suggests a synchronization system which propagate update data to users for reducing processing time efficiently. This synchronization system collects update data in the field and synchronizes server with collected data to use mobile devices by real time. For this system, I design and materialize synchronization module which updates update data and wireless network module.

  • PDF

Topographical Change Detection for Digital Map Update (수치지도 수시갱신을 위한 지형변화 탐지)

  • Park, Yong-Cheol;Lee, Im-Pyeong;Yoo, Chang-Ho;Yun, Ha-Soo
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2007.04a
    • /
    • pp.289-293
    • /
    • 2007
  • Because the current numerical value map and update system in use do not reflect rapidly enough the transformation of topography, their usage are gradually in decrease. Therefore, there is an increasing demand for reception update system of numerical value map which can guarantee the accuracy and up-to-dateness of data. While rapid detection of topographical transformation is essential for rapid updating, the existing research based on remote investigation or direct measurement was difficult to apply efficiently in terms of cost and accuracy. Thereupon, this research aims to present efficient methods of detecting topographical transformations for a frequent real time updating of numerical value map using the topographical transformation and related data inputted in real time into the administrative information system.

  • PDF