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Abstract 
  

Sound event detection in real-world environments suffers from the interference of non-stationary and 

time-varying noise. This paper presents an adaptive noise reduction method for sound event detection based 

on non-negative matrix factorization (NMF). In this paper, we proposed a deep learning model that 

integrates Convolution Neural Network (CNN) with Non-Negative Matrix Factorization (NMF). To improve 

the separation quality of the NMF, it includes noise update technique that learns and adapts the 

characteristics of the current noise in real time. The noise update technique analyzes the sparsity and 

activity of the noise bias at the present time and decides the update training based on the noise candidate 

group obtained every frame in the previous noise reduction stage. Noise bias ranks selected as candidates 

for update training are updated in real time with discrimination NMF training. This NMF was applied to 

CNN and Hidden Markov Model(HMM) to achieve improvement for performance of sound event detection. 

Since CNN has a more obvious performance improvement effect, it can be widely used in sound source based 

CNN algorithm. 
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1. INTRODUCTION 
 

Sound events such as screams, gunshots, glass breaks, and so on, are often associated with critical or 

noteworthy situations. The automatic detection and monitoring of these sound events can be of great use for 

surveillance purposes. Compared to traditional surveillance systems based on video cameras, audio sensors are 

insensitive to illumination or occlusion, cheaper, and more suitable for privacy. Moreover, some events like 

gunshots have no evident visual characteristics and are more suited to audio detection. Nowadays, because of 

these advantages, the audio information has been exploited solely or jointly with video signals in intelligent 

surveillance systems.  

The primary objective of a Sound Event Detection (SED) system is to identify the type of sound source 

present in an audio clip or recording and returns the onset and offset of the identified source. Such a system has 

great potential in several domains such as activity monitoring, environmental context understanding, and 
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multimedia event detection [1], [2]. Generally, research on sound event detection methods has been focused on 

extracting discriminating audio features, and training effective classifiers for distinguishing different sound 

classes and noise (see [3] and [4] for a complete review). The input audio signal is typically transformed to the 

time-frequency domain, and is represented by features like the mel-scale spectral energies, or simply, the 

magnitude spectrogram. Commonly used classifiers include Gaussian mixture models (GMMs), support vector 

machines (SVMs), artificial neural networks (ANNs), and non-negative matrix factorization (NMF). More 

recently, deep learning methods, which are receiving increasing interest, have also been studied for sound event 

detection, if enough training data are available [5]. However, there are several challenges associated with SED 

in real life scenarios.  

Firstly, in real-life scenarios, different sound event can occur simultaneously [2]. Secondly, the presence of 

background noise could complicate the identification of sound event within a particular time frame [6]. This 

problem is further aggravated when the noise is the prominent sound source resulting in a low Signal to Noise 

Ratio (SNR). 

Thirdly, each event class is made up of different sound sources, e.g. a dog bark sound event can be produced 

from several breeds of dogs with different acoustic characteristics [1]. Most of the existing methods employing 

a well-trained classifier over the noise training set cannot handle unseen noise, and also lack the adaptation 

ability to time-varying noise. Performance of these methods can be severely reduced when the test condition 

does not match that of the training data, caused by either different recording devices or locations. How to 

reduce noise, and more importantly, how to generalize well to unknown or changing noise conditions remains a 

great challenge for sound event detection methods, and is also the focus of this work [8]. 

Although a large number of different SED system were proposed in the past, a majority of them were mainly 

based on Gaussian Mixture Model (GMM) [11], Hidden Markov Model (HMM) [10] or the use of dictionaries 

constructed using NMF [12-14]. However, due to the rising success of deep learning in other domains [15-18], 

deep learning for SED development is now a norm and has been shown to perform slightly better than 

established methods [1]. In this paper, we propose an adaptive noise reduction method for sound event 

detection based on NMF. We demonstrated the performance improvement of SED by applying NMF to HMM 

and CNN. Experimental results show that it is appropriate to apply NMF to SED using CNN.  

 

2. RELATED WORKS 

 

2.1 NMF 

 

Figure 1. Procedure of the conventional NMF-based noise reduction method. 
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The NMF popularized by Lee and Seung [21] is an effective method to decompose a non-negative matrix, 

, into two non-negative matrices,  and . Where  is the number of 

components. Therefore, it can be represented as  

                                                                                             (1) 

Where  can be interpreted as the dictionary matrix and  can be interpreted as the activation matrix. 

These two matrices can be randomly initialized and updated through the multiplicative rule given as [23] 

                                                                                  (2) 

                                                                                     (3) 

W is commonly extracted on isolated events to form a dictionary and SED is performed by applying a 

threshold on the activation matrix obtained from the decomposition of the test data [11]. Since NMF only 

works on non-negative matrix, it was applied on the Mel spectrogram prior to the logarithm operation. Thus, 

M represent the Mel spectrogram with L as the number of Mel bins and N as the number of frames. In this 

paper, instead of consolidating W to form the dictionary. We find the H to indicate which frames of each 

audio clip are activated (above a pre-defined threshold) to label the weakly labelled data so that the weakly 

labelled data becomes an approximated strongly labelled data. 

In this system, training inputs are Mel-frequency scaled. This is because they can provide a reasonably 

good representation of signal’s spectral properties. At the same time, they also provide reasonably high 

inter-class variability to allow class discrimination by many different machine learning approaches [19]. 

 

2.2 Sound Event Detection 

In the recent years, SED development has been overwhelmed with the use of deep learning algorithms 

particularly the use of CNN or Convolutional Recurrent Neural Network (CRNN). This phenomenon was 

also reflected in the 2018 DCASE challenge, where almost all participants for Task 4 (Large-scale weakly 

labeled semi-supervised sound event detection in domestic environments) proposed the use of CRNN [9]. As 

discussed in [1], CNN has the benefit of learning filters that are shifted in both time and frequency while 

Recurrent Neural Network (RNN) has a benefit of integrating information from the earlier time windows. 

Thus, a combined architecture has the potential to benefit from two different approaches that suggest its 

popularity. 

The CRNN architecture proposed by Cakir et al. [1] first extracted features through multiple convolutional 

layers (with small filters spanning both time and frequency) and pooling in the frequency domain. The 

features were then fed to recurrent layers, whose features were used to obtain event activity probabilities 

through a feedforward fully connected layer. Evaluation over four different datasets had also shown that such 

a method has a better performance as compared to CNN, RNN and other established SED system. However, 

such a system would require a large amount of annotated data for training. 

Lu [10] proposed the use of Mean Teacher Convolution System that won the DCASE 2018 Task 4 

challenge with an F1 score of 32.4%. In their system, context gating was used to emphasize the important 

parts of audio features in frames axis. Mean-Teacher semi-supervised method was then applied to exploit the 

availability of unlabeled data to average the model weights over training steps. Although, this system won 

the 2018 challenge, there is still a large room for improvement. 
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3. PROPOSED METHOD 

3.1 Audio Processing 

In this system, training inputs are mel-frequency scaled. This is because they can provide a reasonably 

good representation of signal’s spectral properties. At the same time, they also provide reasonably high 

inter-class variability to allow class discrimination by many different machine learning approaches [19]. 

In this paper, audio clips were first resampled to 16 kHz that were suggested to contain the most energies 

[20]. Moreover, segments containing higher frequency may not be useful for event detection in daily life [10]. 

A short-time fast Fourier transform with a Hanning window size of 1024 samples and a hop size of 500 

samples was used to tabulate the spectrogram. After that, a mel filter bank of 64 and bandpass filter of 50 Hz 

to 14 kHz was applied to obtain the mel spectrogram to be used as input to the training model. Finally, a 

logarithm operation was applied to obtain the log mel spectrogram. 

 

3.2 Adaptive NMF 

In this section, an NMF-based adaptive noise sensing and reduction method is proposed to mitigate the 

degradation of noise reduction when there is a mismatch in noise types between noise basis training and 

estimation using NMF. Figure 2 shows the procedure of the proposed NMF-based adaptive noise sensing and 

reduction method. As shown in the figure, the procedure is divided into three different processing stages: a 

priori NMF basis modeling, NMF-based adaptive noise sensing, and noise reduction. 

The first processing stage of the proposed method is the same as that of the conventional method described 

in Section 2. In other words, clean speech signals and noise signals are separately applied to the NMF 

training in order to obtain the a priori basis matrices. In the second processing stage, the adaptive noise 

sensing is performed to decompose the noisy input spectrum into speech and noise spectrum using a priori 

speech basis matrix estimated by the first processing stage. That is, the noise basis and activation matrices 

are obtained by adapting a priori noise basis from the instantaneous noise frames of the noisy input signal. 

Finally, the third processing stage of the proposed method estimates the noise-reduced speech signal by 

constructing a Wiener filter [24] using the adaptively estimated noise spectrum. 

 

 

Figure 2. Procedure of the proposed NMF-based adaptive noise sensing and reduction method. 
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3.3 Convolutional Neural network 

The CNN used in this system is modified based on the one proposed in Kong et al. [22] proposed four 

different CNN with a different number of layers and pooling operators and found that the nine layers CNN 

with max pooling operator achieved the best performance [7]. In this paper, we are interested in finding out 

whether with the inclusion of NMF, will a shallower CNN produce a comparable or even a better result. 

As shown in Fig 1., a 3 layers CNN with 1 layer Fully Connected Network with Softmax is proposed. In 

this architecture, it consists of 3 convolutional layers of kernel size 5 x 5 with a padding size of 2 x 2 and 

strides 1 x 1. This architecture is almost similar to Mesaros et al. [21] except for the kernel size and the 

number of layers. 

 

 

Figure 3. Architectures of Convolution Neural Network 

 

3.4 System Flow 

This paper proposes a supervised and adaptive NMF framework for sound event detection, as shown in 

Fig 1. The input audio signals are first processed via the short-time Fourier transform (STFT), and magnitude 

spectrograms are used for audio signal representation. The detection method has two phases—a training 

phase and a test phase. During training, for each sound event class, an event dictionary is learned using its 

clean event training data. The spectrograms of all of the event training signals for a specific class are 

concatenated to yield a data matrix denoted by V_s^train∈R_+^(F×Ttrain), and the standard NMF is then 

performed according to Equations (2) and (3). The resulting event dictionary Ws is used and kept fixed 

during the test. In the test phase, the input noisy signal is processed following the three steps of noise 

dictionary learning, source separation, and event detection. It should be mentioned that the present algorithm 

is developed in an offline manner, and real-time processing is not emphasized in this paper. For an input test 

signal, a noise dictionary is estimated from the current input, and then used in the supervised separation 

process combined with the pre-trained event dictionary. Meanwhile, the time-frequency weights for A-NMF 

are derived according to prior information of the target event class, as well as from the results of the noise 

estimation. After source separation, the event spectrogram is reconstructed and post-processed by an energy 

detector so as to generate the detection results. 
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Figure 4. Framework of the proposed sound event detection method based on 

non-negative matrix factorization (NMF) 

 

4. EXPERIMENT 
 

For the experiment, assuming the actual situation, we experimented with directors and actors to detect the 

screams that occur with various noise environments indoor space with reverberation size of 33m^2. The 

training data used noise and scream dataset of DCASE(2017) which is most famous worldwide Challenge of 

SED. Based on the training data, we implemented the adaptive NMF and evaluated the noise canceling 

performance and SED performance of Scream based on the field data collected assuming the actual 

environment. The figure 5 shows the spectrogram comparisons of the attenuated noise from the collected field 

data using Adaptive NMF. The figure 5 (a), (b) shows that the noise is eliminated, but the features for 

identifying the main sound source event remain.  

As shown in Fig. 5 (c) and (d), the performance of HMM and CNN-based SED has been improved since 

preprocessed with A-NMF has reduced the False Alarm which is detected as a target(scream) sound but is not. 

The effect was greater with CNN (fig 5. (d)) than with HMM (fig 5. (c)). When using CNN, the threshold for 

event discrimination threshold was 1.2, and after A-NMF was applied, the threshold value was less sensitivity 

than before. Thus, detection performance is more stable than without A-NMF. In the CNN-based SED using 

A-NMF, we addressed that it is very accurate in determining the sound source event of real noise environment. 

 

Figure 5. Spectrogram for noise reduction: left(a) and right columns(b) show spectrograms 

of original sound data and noise reduced sound data, respectively. And Comparison of SED 

performance between original data and noise reduced data: using HMM (c) and CNN (d) 
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5. CONCLUSION 
 

In this paper, an adaptive noise reduction method based on supervised and adapted NMF is proposed for 

sound event detection in non-stationary background noise environment. The proposed adaptive strategies are 

guided by both the prior knowledge of sound events and the results from noise estimation, which provide an 

additional discriminating ability to the original NMF model. For one thing, the weight of each frequency band 

is quantified as a trade-off between its contributions to constructing the target event class and noise. This forces 

the NMF decomposition to emphasize those distinct or dominant frequencies of the target event class more. 

The frequency weighting scheme has shown its effectiveness in improving discrimination when dealing with 

strong interfering sounds with highly overlapping frequency components. Of all of the adaptive schemes, the 

experimental results show that the best performance is achieved by the combined time-frequency scheme that 

makes the best use of prior knowledge. 

As the proposed method employs a noise estimation technique from the current input noisy signal, which 

also guides the derivation of both the frequency and statistical noise biases, the system can be easily adapted to 

different and time-varying noise conditions. Nevertheless, to ensure performance, the sound events in the 

training set and the development/evaluation set should better come from the same distribution. In the present 

algorithm, an average spectral template is extracted for representing a sound event class when determining 

noise biases, which has limitations in dealing with the diversity of characteristics within a sound class. Future 

work will address the adaptation of the proposed approach with multiple templates or templates considering the 

temporal dynamics of sound events. In addition, another improvement of the present algorithm would be 

supporting it with real-time processing by using a sliding window, which would make this work more 

promising for practical use. 
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