• Title/Summary/Keyword: Real-Time Monitoring

Search Result 3,592, Processing Time 0.043 seconds

Development of a Real-time Radiation Level Monitoring Sensor for Building an Underwater Radiation Monitoring System (수중 방사선 감시체계 구축을 위한 실시간 방사선 준위 모니터링 센서 개발)

  • Park, Hye Min;Joo, Koan Sik
    • Journal of Sensor Science and Technology
    • /
    • v.24 no.2
    • /
    • pp.96-100
    • /
    • 2015
  • In the present study, we developed a real-time radiation-monitoring sensor for an underwater radiation-monitoring system and evaluated its effectiveness using reference radiation sources. The monitoring sensor was designed and miniaturized using a silicon photomultiplier (SiPM) and a cerium-doped-gadolinium-aluminum-gallium-garnet (Ce:GAGG) scintillator, and an underwater wireless monitoring system was implemented by employing a remote Bluetooth communication module. An acrylic water tank and reference radiation sources ($^{137}Cs$, $^{90}Sr$) were used to evaluate the effectiveness of the monitoring sensor. The underwater monitoring sensor's detection response and efficiency for gamma rays and beta particles as well as the linearity of the response according to the gammaray intensity were verified through an evaluation. This evaluation is expected to contribute to the development of base technology for an underwater radiation-monitoring system.

Real-Time Automated Cardiac Health Monitoring by Combination of Active Learning and Adaptive Feature Selection

  • Bashir, Mohamed Ezzeldin A.;Shon, Ho Sun;Lee, Dong Gyu;Kim, Hyeongsoo;Ryu, Keun Ho
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.1
    • /
    • pp.99-118
    • /
    • 2013
  • Electrocardiograms (ECGs) are widely used by clinicians to identify the functional status of the heart. Thus, there is considerable interest in automated systems for real-time monitoring of arrhythmia. However, intra- and inter-patient variability as well as the computational limits of real-time monitoring poses significant challenges for practical implementations. The former requires that the classification model be adjusted continuously, and the latter requires a reduction in the number and types of ECG features, and thus, the computational burden, necessary to classify different arrhythmias. We propose the use of adaptive learning to automatically train the classifier on up-to-date ECG data, and employ adaptive feature selection to define unique feature subsets pertinent to different types of arrhythmia. Experimental results show that this hybrid technique outperforms conventional approaches and is therefore a promising new intelligent diagnostic tool.

A Study on Educational Contents of Hybrid Electric Vehicle Using Real Time Monitoring System (실시간 모니터링 시스템을 이용한 하이브리드 자동차 교육용 콘텐츠에 관한 연구)

  • Baek, Soo-Whang
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.2
    • /
    • pp.443-448
    • /
    • 2018
  • Recently, Hybrid Electric Vehicle(: HEV) is in the spotlight to global warming caused by carbon dioxide and emission reduction. HEV consists of a combination of mechanical engine and electric motor system. The flow of energy required to drive a HEV depends on the driving conditions of the vehicle. In this paper, we study the contents of HEV education using real-time monitoring system. A real-time monitoring system consisting of hardware and virtual programs is used to simulate the overall operation of a HEV through simulations according to driving conditions and to explain how to learn through hardware.

Real-time Water Quality Prediction for Evaluation of Influent Characteristics in a Full-scale Sewerage Treatment Plant (하수처리장 유입수의 특성평가를 위한 실시간 수질예측)

  • Kim, Youn-Kwon;Chae, Soo-Kwon;Han, In-Sun;Kim, Ju-Hwan
    • Journal of Environmental Impact Assessment
    • /
    • v.19 no.6
    • /
    • pp.617-623
    • /
    • 2010
  • It is the most important subject to figure out characteristics of the wastewater inflows of sewerage treatment plant(STP) when situation models are applied to operation of the biological processes and in the automatic control based on ICA(Instrument, Control and Automation). For the purposes, real-time influent monitoring method has been applied by using on-line monitoring equipments for the process optimization in conventional STP. Since, the influent of STP is consist of complex components such as, COD, BOD, TN, $NH_4$-N, $NO_3$-N, TP and $PO_4$-P. MRA2(Microbial Respiration Analyzer 2), which is capable of real-time analyzing of wastewater characteristics is used to overcome the limitations and defects of conventional online monitoring equipments in this study. Rapidity, accuracy and stability of developed MRA2 are evaluated and compared with the results from on-line monitoring equipments for seven months after installation in Full-scale STP.

A Study on the Real Time Monitoring of Long Span Bridge Behavior Using GPS (GPS를 이용한 장대교량 실시간 거동 모니터링에 관한 연구)

  • Choi, Byoung-Gil;Sohn, Duk-Jae;Na, Young-Woo
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.28 no.3
    • /
    • pp.377-383
    • /
    • 2010
  • This study aims to develop the system which is able to monitor long span bridge behavior in real time using GPS. Through measuring displacement of long span bridge by GPS in real time, over all 3D behavior of bridge could be analyzed and managed. Monitoring system of long span bridge which is developed in this study is able to manage in real time the safety of bridge by transmitting horizontal and vertical displacement of bridge, and danger signals to an integrated operations center. Also it is able to monitor the absolute behavior of long span bridge by GPS, and to construct a national bridge safety management networks.

Study of Smart Vehicle Seat for Real-time Driver Posture Monitoring (운전자 자세 실시간 모니터링이 가능한 스마트 자동차 시트 연구)

  • Shim, Kwangmin;Seo, Jung Hwan
    • Journal of Auto-vehicle Safety Association
    • /
    • v.12 no.1
    • /
    • pp.52-61
    • /
    • 2020
  • In recent years, the increasing interest in health-care requires the industrial products to be well-designed ergonomically. In the commercial vehicle industry, several researchers have demonstrated the driver's posture has great effect on the orthopedic desease such as fatigue, back pain, scoliosis, and so on. However, the existing sensor systems developed for measuring the driver posture in real time have suffered from inaccuracy and low reliability issues. Here, we suggest our smart vehicle seat system capable of real-time driver posture monitoring by using the air bag sensor package with high sensitivity and reliability. The ergonomic numerical model which can evaluate a driver's posture has been developed on the basis of the human body segmentation method followed by simulation-based validation. Our experimental analysis of obtained pressure distribution of a vehicle seat under the different driver's postures revealed our smart vehicle system successfully achieved the driver's real-time posture data in great agreement with our numerical model.

Real-Time Plasma Process Monitoring with Impedance Analysis and Optical Emission Spectroscopy

  • Jang, Hae-Gyu;Kim, Dae-Kyoung;Kim, Hoon-Bae;Han, Sa-Rum;Chae, Hee-Yeop
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.473-473
    • /
    • 2010
  • Plasma is widely used in various commercial etchers and chemical vapor deposition. Unfortunately, real-time plasma process monitoring is still difficult. Some methods of plasma diagnosis is improved, however, it is possible for real-time plasma diagnosis to use non-intrusive probe only. In this research, the object is to investigate the suitability of using impedance analysis and optical emission spectroscopy (OES) for real-time plasma process monitoring. It is assumed that plasma system is a equivalent circuit. Therefore, V-I probe is used for measuring impedance, which can be a new non-intrusive probe for plasma diagnosis. From impedance data, we tried to analyse physical properties of plasma. And OES, the other method of plasma diagnosis, is a typical non-intrusive probe for analyzing chemical properties. The amount of the OES data is typically large, so this poses a difficulty in extracting relevant information. To solve this problem, principal component analysis (PCA) can be used. For fundamental information, Ar plasma and $O_2$ plasma are used in this experiment. This method can be applied to real-time endpoint and fault detections.

  • PDF

Development and Performance Evaluation of a Real-time PM Monitor based on Optical Scattering Method (광산란방식을 이용한 미세먼지 실시간 모니터링 장치 개발 및 성능평가)

  • Kang, Doo Soo;Oh, Jung Eun;Lee, Sang Yul;Shin, Hee Joon;Bong, Ha Kyung;Kim, Dae Seong
    • Particle and aerosol research
    • /
    • v.14 no.4
    • /
    • pp.107-119
    • /
    • 2018
  • In this study, we have developed a real-time monitoring device for measuring PM10 and PM2.5 of ambient aerosol particles. The real-time PM monitor (SENTRY Dust Monitor) uses the optical scattering method and has 16 channels in particle size. The laboratory and field tests were carried out to evaluate the developed SENTRY Dust Monitor. Arizona Test Dust particles were used as test particles in the laboratory test and the field test was carried out at the Jongno-gu Observatory in Seoul. The measurements of PM10 and PM2.5 concentrations obtained by SENTTRY Dust Monitor were compared with Grimm Dust Monitor (Model 1.108) and a beta ray gauge. It was shown that the PM10 and PM2.5 concentrations obtained by SENTRY Dust Monitor agree well with that of the reference devices. Based on the results obtained in this study, it could be concluded that the SENTRY Dust Monitor can be used as a PM monitoring device for real-time monitoring of the ambient aerosols.

Architecture for Integrated Real-Time Health Monitoring using Wireless/Mobile Devices

  • Ryoo, Boong Yeol;Choi, Kunhee
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.336-338
    • /
    • 2015
  • This research is to propose an applicable framework for real-time health surveillance and safety monitoring at construction sites. First this study aims at finding (1) a framework for health surveillance that is likely to benefit employers and employees in the industry, (2) a valid way to identify factors or conditions with potential health concerns that can occur under particular work conditions, (3) An effective way to apply wireless/mobile sensors to construction workers using real-time/live data transmission methods, and (4) A relationship between a worker's vital signs and job site environment. Biosensors for physiological response and devices for weather/work related data are to collect real-time data. Relationships between jobs and physiological responses are analyzed and factors that touched particularly contributing to certain responses are identified. When data are incorporated with tasks, factors affecting tasks can be identified to estimate the magnitude of the factors. By comparing work and normal responses possible precautionary actions can be considered. In addition, the study would be lead to improving (1) trade-specific dynamic work schedules for workers which would be based on various factors affecting worker health level and (2) reevaluating worker productivity with health status and work schedule, thereby seeking ways to maximize worker productivity. Through a study, the paper presents expected benefits of implementing health monitoring.

  • PDF

Real-time Multi-sensing System for In-process monitoring of Chatter Vibration(l) (채터진동의 인프로세스 감시를 위한 실시간 복합계측 시스템(1))

  • Kim, Jeong-Suk;Kang, Myeong-Chang;Park, Cheol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.10
    • /
    • pp.50-56
    • /
    • 1995
  • Chatter Vibration is an unwanted phenomenon in metal cutting and it always affects surface finish, tool life, machine life and the productivity of machining process. The real-time detection of the chatter vibration is is necessarily required to automation system. In this study, we constructed the multi-sensing system using Tool Dynamometer, Accelermeter and AE sensor. Especially, Acoustic Emission(AE) generated during turning was investigated the possibility for real-time detection of chatter vibration. Turning experiments were performed using carbide insert tip under realistic cutting conditions and tapered workpiece of SM45C. Consquently, the real-time detection using multi-sensing system can be used for Inprocess monitoring of chatter vibration.

  • PDF