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Abstract 
 

Electrocardiograms (ECGs) are widely used by clinicians to identify the functional status of 

the heart. Thus, there is considerable interest in automated systems for real-time monitoring of 

arrhythmia. However, intra- and inter-patient variability as well as the computational limits of 

real-time monitoring poses significant challenges for practical implementations. The former 

requires that the classification model be adjusted continuously, and the latter requires a 

reduction in the number and types of ECG features, and thus, the computational burden, 

necessary to classify different arrhythmias. We propose the use of adaptive learning to 

automatically train the classifier on up-to-date ECG data, and employ adaptive feature 

selection to define unique feature subsets pertinent to different types of arrhythmia. 

Experimental results show that this hybrid technique outperforms conventional approaches 

and is therefore a promising new intelligent diagnostic tool. 
 

 

Keywords: Arrhythmia, Real-time cardiac health monitoring, Adaptive classification, 

Adaptive feature selection, Electrocardiogram 
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1. Introduction 

Electrocardiogram (ECGs) are a series of waves and deflections representing cardiac (heart) 

electrical activity, as sensed by several electrodes, or leads. placed on the body. ECGs contain 

five characteristic peaks and valleys, arbitrarily labeled with successive letters of the alphabet: 

P, Q, R, S, and T, as shown in Fig. 1. The P wave represents activation of the upper chambers 

of the heart, the atria, whereas the QRS wave (or complex) and T wave represent excitation of 

the ventricles or the lower chambers of the heart. 
 

 

Fig. 1. Normal ECG signal showing temporal and amplitude characteristics of different components [1] 

ECGs are a very important clinical tool for characterizing the functional status of the heart. 

Heart arrhythmias can be accurately identified by expert clinicians simply on the basis of 

changes in the characteristics of the P, QRS, and T components [1]. Indeed, wired ECG 

monitoring in hospitals is very crucial in saving lives. However, such monitoring is inadequate 

for patients with coronary heart disease, who require continuous follow-up and monitoring. In 

addition, the morphological characteristics of ECGs vary from person to person and even for a 

single individual over time. Thus, to build an accurate automated classification model, a huge 

amount of training data is required. However, building such a database can be a very costly 

endeavor and will still only detect a limited number of arrhythmias with limited accuracy. 

Moreover, since all ECG features must be considered, the computational load would be 

impractical for fast analysis on a computer with limited resources. Therefore, there has been 

considerable interest in developing methods to select a subset of features sufficient for 

accurate classification [2]. 

Here we propose a hybrid technique comprising an active learning technique and a method 

for adaptive feature selection to achieve accurate, real-time arrhythmia detection. The former 

trains the classifier model with updated data, while the latter selects a unique subset of ECG 

features related to the QRS complex as well as the P or T waves for each type of arrhythmia. 

Together, the two methods achieve sensitive detection with a low computational complexity. 

This paper is a combination of [3] and [4] but with further discussion, analyses, and 

experimental results. The outstanding performance of the proposed hybrid technique was 

demonstrated using various approaches. Experimental results confirm the effectiveness of the 

proposed technique.  

In the remainder of this paper, we provide a brief description of related work, the proposed 

hybrid technique, and the experimental results. Finally, we summarize our findings and 

present the main conclusions. 
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2. Related Work 

2.1 Training Datasets 

The two main approaches to constructing classifiers are the global and the local methods. 

Global classifiers are built from a large database of ECGs and are the most common solutions 

used in automatic ECG analysis (e.g., see [5] and [6]). In brief, large ECG datasets are 

randomly divided into training and validation datasets of different sizes; the former is used to 

train the classifier and the latter to validate it. For example, Rodriguez et al. attempted to build 

an accurate model for classifying cardiac arrhythmias based on feature extraction [7]. They 

randomly divided a global dataset into a training (66%) and validation (33%) set and used the 

Waikato Environment for Knowledge Analysis (WEKA) and SPSS AnswerTree tools for 

learning. Sixteen methods were used in the experiments. However, one main challenge faced 

with this technique is that the morphologies of ECG waveforms vary widely from patient to 

patient. Thus, a classifier learned from data specific to one patient will perform very well when 

tested on data for the same patient, but will often fail on data for other patients. To overcome 

this problem, the common trend seen in the literature is to increase the size of the training 

dataset by as much as possible. This trend is also seen in commercial products introduced by 

various device vendors. However, such an approach has several different drawbacks. First, the 

huge amount of ECG records necessary to build the classifier will necessitate complex 

development, maintenance, and update procedures. Second, it is difficult to learn the classifier 

using abnormal ECGs collected during the monitoring process. Therefore, there is a possibility 

that specific arrhythmias will not be detected when applying that model to patient records. 

Moreover, it is impossible to introduce all ECG waveforms from all expected patients [8]. 

The second approach, the local method, is customized to a specific patient. In other words, 

the classifier is learned only using datasets collected for that specific patient [9]. The goal is to 

ensure that the classification model is adapted to the unique characteristics of each patient. 

Although this technique may alleviate the problem with the learning process, it suffers from a 

clear disadvantage in terms of the time consuming and labor intensive nature of creating 

cardiologist-labeled patient-specific training sets. Moreover, only few patients can be 

expected to be involved in the development of the ECG processing method. Thus, there are 

limitations to the advantages provided by such technique among the expected audience, even 

if it is permissible. Hu et al. [10] overcome this problem by utilizing a mixture-of-experts 

(MOE) approach that combines global and local classifiers to realize patient adaptation. This 

did away with the need to manually label the entire database, thus reducing time and effort. 

However, their approach still suffers from several pitfalls: a lack of sensitivity due to 

comparison between two experts (global classifier and patient-specific local classifier), and 

considerable cost to develop a local expert for each individual patient. Moreover, it is error 

prone because of the dependence on different classifiers. We previously suggested a nested 

ensemble technique to solve the problem of creating an appropriate training dataset. 

Specifically, we proposed modifying the training dataset with up-to-date data and selecting an 

adequate set of ECG features for better accuracy [11]. However, despite favorable results, 

synchronizing the two steps was computational expensive, which precluded a real–time 

implementation. Moreover, the technique was static to some extent. 

2.2 Feature Extraction 

Several methods have been used to extract features as inputs for the classifier: digital filtering 

[12], Fourier transform [13, 14], wavelet transform [15, 16, 17], principal component analysis 

(PCA) [18, 19], and independent component analysis (ICA) [20, 21]. ICA, in particular, has 
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been shown to outperform the others. This method identifies the underlying factors or 

components from multivariate (multidimensional) statistical data. What distinguishes ICA 

from other methods is that it finds components that are both statistically independent and 

non-Gaussian. ICA has been successfully applied to numerous signal processing problems in 

areas such as biomedicine, communications, finance, and remote sensing. In addition, it has 

recently found applications in the study of ECG data [22, 23], where it has been used in an 

exploratory manner to detect consistent patterns of heart activation with a common time 

course. Overall, the attractiveness of ICA lies in its lack of use of any strong assumptions on 

the data. Unlike other approaches, ICA methods do not impose constraints on shape and may 

thus detect responses that would otherwise be ignored by a model-based framework. Moreover, 

ICA can isolate sources of structured noise that may otherwise be too complex to model as 

confounds in the multiple regression framework of the general linear model (GLM) [24]. 

Among the various features, most techniques use the QRS complex, mainly the R wave, 

and ignore the other features (the P and T waves) because the QRS complex is usually quite 

well defined. From the QRS complex, the RR interval can be determined, which is critical in 

the diagnosis of many arrhythmias such as premature ventricular contractions, left and right 

bundled branch blocks, and paced beats. However, there are still a large number of 

arrhythmias that cannot be detected without considering the P and T waves [25]. In addition, 

arrhythmias that have different causes may manifest in similar ways on the ECG, taking into 

account the two main types of arrhythmias: ventricular and supraventricular arrhythmias. The 

former occur in the ventricles and are recognized because of the abnormal QRS morphology, 

while the latter occur in the atrium and can only be determined from their effect on the 

ventricular rhythm. For example, prematurity is used as a feature to detect non-sinus beats, 

sudden pauses as indicators of atrioventricular conduction disturbances or sinus pauses, and 

irregularity as a measure of the presence of atrial fibrillation or flutter. Accordingly, 

supraventricular abnormalities causing no, or only gradual, changes in ventricular rhythm are 

not detected by current analysis methods that only refer to the QRS complex for tracing 

cardiac activity [26]. 

Most descriptors of QRS complex morphology were developed using pattern recognition 

techniques [27]. Measuring the diversity between the sequential and frequency characteristics 

of the QRS complex waveform has also been attempted, such as by using Karhunen–Loeve 

transforms [28], Hermite functions [29], and the wavelet transform [30]. Recently, methods of 

determining the adaptive time–frequency transform of ECG signals and calculating the 

applicable time–frequency features, which reveal the structures of the signals, have been 

introduced [31, 32]. The most popular approaches are based on pattern recognition techniques 

using morphological features, which can realize very high accuracy, but there are several 

disadvantages. First, a very large database of templates must be stored in memory for 

matching. Second, the accuracy relies on threshold-based segmentation to discriminate 

components of the ECG signal, which is extremely unadaptive to intra- and interpatient ECG 

morphological disparity. Finally, with such features, only a limited numbers of classes of 

waveforms can be extracted to describe specific cardiac arrhythmias. Moreover, the number of 

morphological descriptors greatly affects computational cost and speed [33]. Such 

computation can be too complex to achieve with wireless sensors, which have limited power 

and can suffer from large noise. On the other hand, in some studies, time–frequency analysis 

of ECG waveforms has been used to detect the abnormal cardiac conditions [34, 35]. 
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2.3 Arrhythmia Classification 

Automated arrhythmia classification using ECG features (P, QRS, and T) is performed either 

using supervised and non-supervised methods [36, 37]. Supervised training requires building a 

model for classifying the ECG data. The classifier model maps the input features to required 

output classes on the basis of features specified during training. Several data mining 

techniques are used for this purpose, with one of the most famous being the decision-tree 

technique [38, 39]. Several efforts have been made to apply artificial neural networks (ANNs) 

as well. ANNs have good noise tolerance and high efficiency when dealing with non-linear 

problems [26, 40, 41], but suffer from many drawbacks. For example, only a limited number 

of arrhythmias that can be detected due to the restricted number of genuine arrhythmia shapes 

that can be saved in memory. Moreover, the computational complexity rises rapidly with the 

number of arrhythmias that are being categorized, which makes the technique impractical. 

Other methods have also been employed, including support vector machine [42, 43], nearest 

neighbor analysis [44, 45], rule-based classifiers [46], fuzzy adaptive classification [47, 48], 

rule-based rough-set decision system [49], clustering for the purposes of arrhythmias 

identification is introduced [50]. Recent studies that apply immerging patterns to detect 

arrhythmias were also applied [51]. 

Generally, these methods are general and can be applied to any classification task. The 

techniques can be evaluated on the basis of accuracy: correct descriptions of arrhythmias, 

effectiveness: sensitivity to abnormalities, efficiency: speed and reliability: determine how far 

doctors can trust a model. These factors vary from one method to the other. 

3. Proposed Hybrid Technique 

The proposed hybrid technique is composed of two main parts: the active learning method, 

and the feature selection method. These two components work independently, but in a well 

synchronized manner. ECGs are sent to the active learning method to build an updated training 

model, and also to the feature selection system for tuning the features according to the 

arrhythmias. The hybrid model integrates the two methods to enhance accuracy in real time. 

3.1 Active Learning 

Conventionally, the computation process to detect arrhythmias starts with detecting the ECG 

signal, filtering and extracting the useful features, training the classifiers, and then identifying 

the type of rhythm from among a limited number of labels. In these approaches, errors at early 

stages such as feature extraction affect the overall performance. Thus, ambiguous outputs 

persist and might not be resolved using a single learning technique. Moreover, dependence on 

only one learning process often leads to errors that are apparent in a classifier model. 

The active method was developed to detect arrhythmias in very efficient manner. In essence, 

it involves to learning the classifier model with up-to-date training data to reflect changes in 

the morphological descriptors with time. The conventional learning techniques try to learn 

each label assignment process, that is, study the available features with specific class labels to 

predict future data. By contrast, active learning is a continuous process that keeps the classifier 

up-to-date. Partial changes are made to the training dataset when there are insufficient 

high-quality training data, and complete changes are made when very few high-quality 

training data are available. That is, new features are introduced to the current training group to 

update it, or all the present data may be dumped to begin with a fresh dataset if a considerable 
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number of modifications occur. 

For the efficiency and the effectiveness requirements, the technique is based upon 

in-between process which is called double impact so the change always takes place through 

the double impact. Active learning provides very high accuracy and reduces the computational 

cost to some extent since the modifications are not conducted in all situations.  

The active technique has four steps, as shown in Fig. 2. The initial learning stage involves 

learning from a random set of data without any further considerations. The classifier 

performance is then evaluated (check) and updated (improve) for consistency. Finally, 

low-quality data is removed to avoid poor results [39]. The double impact is used to substitute 

the partial or complete modification of the current active training data set. The Double impact 

conducts the improvement and the removal process in two different files. The objective is to 

minimize hitting the main database as much as possible, so as to save time furthermore 

enhance accuracy by making double filtering. 
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Fig. 2. Active learning process flow [52] 

3.1.1 Initial Learning 

First, we start the learning process with a random group of records (categories), which 

represent (50%) of the overall dataset without considering any factors or any details to start the 

process of labeling (detecting arrhythmia types). The (check) and (improve) steps are later 

performed to ensure the correctness of the arrhythmia assignment process when applying the 

classifier model to testing data that represent (50%) of the overall dataset. 
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3.1.2 Checking Usability 

After the initial step, the assigned labels are checked on randomly selected categories. This is 

conducted using an overall trust index Trust
M

(x), which is calculated using the local trust index 

L
M

(x) obtained using a label assigned to a specific category with a specific feature vector. If the 

label of the same category (with the same feature set) is assigned to the target category, the 

local trust index L
M

(x) will increase. This index L
M

(x) is calculated with the following formula: 
 





featuresf

s

f

M xCiFxl )().,()(     [39, 52]                                                   (1) 

 

where f is the feature number, F is the contribution of the feature, and C
S
(x) represents the 

category score when labeled as arrhythmia (i), which calculated as follows:  
 





featuresf

f

S iFxC ),()( 
       [39, 52]                                             (2)  

 

The function βf (F, i) checks the set of features (F) in specific category labeled as arrhythmia 

(i). It returns "+1” if the label (i) is assigned to category (x), otherwise it returns “−1.” 
 



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
other wise   1-

i label(x) if  1
),( iFf

        [39, 52]                                    (3)  

 

The local trust index L
M

(x) is considered in determining the overall trust index Trust
M

(X), 

which is defined using a sigmoid function Sigmoid(X) (0.5 < Trust
M

(X) < 1): 
 





n

x

mM xlsigmoidXTrust
1

)()(              [39, 52]                                         (4)  
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The overall Trust
M

(X) is utilized as a likelihood that indicates the usability of the training set 

(X). If Trust
M

(X) is greater than some arbitrarily chosen threshold, (X) is judged to be reliable, 

i.e., effective, and otherwise (X) is judged to be unreliable, i.e., ineffective. The unreliable (X) 

is either improved or removed. The overall Trust
M

(X) fluctuates continuously in relation to the 

overall performance of the classifier model and its ability to detect different types of 

arrhythmias. 

3.1.3 Improvement 

The checking step ends with one of two judgments: either the current training set is reliable or 

not for different classes of arrhythmias. Accordingly, unreliable sets must be modified with 

new data. This process has two parts: first, specifying the useless category or categories; and 

second, replacing it or them with newly selected one(s). In the first step, category (x) in the 

active training set (X) is removed if the category score C
S
(x) is less than a threshold δremove. The 

removal process is as follows: 
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remove     then 

 )(C if S

removex                  [39, 52]                                        (6) 

 

The removed category or categories will send to the improvement file in the double impact 

area not to the main database. So the removed category will send with their C
S
(x) in a sending 

order manner. Accordingly, the saving process in the improvement file is conducted 

depending on the category score (the high score in the top). The size of the improvement file is 

fixed so as not to be exceeding the 50% of the whole. 

Second, a new a category is selected randomly from the main database depending on the 

probability p
C
(x) that a specific category (x) will be used in updating the current training set 

(X). The probability p
C
(x) is relative to the overall Trust

M
(X) calculated in equation (4). 
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We calculate both P
C
 for the substitute category (xselected) and the removed category (xremoved), 

and then compare them to avoid selecting the removed one. The selected category is newly 

assigned to the active training group (active X). Then, the process returns to the loop of the 

check and improvement steps. 

Starting from the second modification process, the substitutions take place from the 

improvement file in the double impact area not from the main database. The selection of the 

substituted category is depending on the C
S
(x), so the category with high score will be selected 

i.e. selecting the category on the top of the list. The category will remove from the 

improvement file, if selected two times and removed from the active learning set. In this case, 

it replaced by fresh category from the main database using equation (7) to avoid selecting the 

same one.    

The replacement of the impractical category could be executed several times during the 

check and update steps. Categories that are removed from the current active training set (X) 

could be selected in the subsequent update steps for reactivation, which means all categories, 

could be assigned, regardless of the removal process.   

3.1.4 Removal 

The improvement step is usful when there is a limited number of bad labeling using the current 

group (X), while is useless when there are multiple defects among the categories, which 

requires an iterative improvement process. This can be very expensive in terms of time and 

thus negatively affect the performance of the classifier model. Therefore, the removal step is 

introduced. 

All categories in (X) are removed, i.e., the active training set is removed, if it has a defect 

score D
S
(X) greater than a threshold θremove. The removal process is as follows:   

 

remove     then 

 )(D if S

removeX                  [39, 52]                                      (8) 

 

As it happened with improvement stage the transfer and the replacement processes are 

conducted through the double impact area, but this time using the removal file. Except in the 

first time the initial learning step will restart again with the same procedures. 

In this case, the initial learning step will restart again with the same procedures. However, a 

new group of categories (not random) should be selected, which can be achieved using 
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equation (7). Note that the ratio of training to validation data does not affected by 

improvement or removal steps. 

The removal file generated by updating the improvement file. The best categories with highest 

categoryscore C
S
(x) in the improvement file, will copied to the removal file. The sizes of the 

removal file exactly represent the size of the training data. The different between the two files 

in the double impact area (improvement and the removal files) is that, the old `good categories 

with high C
S
(x), which their performnaces droubled sudenlly will no removed from the 

removal file as it happened in the improvement file. They will be active but in the bottom of 

the list with specific sign to specify them. If the improvement is no achived in the next coming 

testing proces, then, they will be swapted with new categories from the main database using 

equation (7) to insure random selection and avoide selecting the samed ones. 

 

3.2 ECG Features Selection 

As mentioned, the aim of this method is to design a unique feature set (distributed through ECG 

parameters P, QRS, and T) that can be employed to describe arrhythmias in a very sensitive 

manner. The selection processes identifies one or two parameters in addition to the QRS 

complex. In our design, we accomplish sensitive adaptation on the basis of the necessity of 

features to specifically detect a specific arrhythmia class. Consequently, considerable 

accuracy and lower computation complexity are achieved. 

Similar arrhythmias often share similar features. Therefore, it is useful to predict the 

required features to detect different types of arrhythmias. The method uses similar arrhythmias 

collected from the training data. A parameter score PS is used to quantify the pertinence of a 

parameter. The overall features list, which represents the arrhythmia class label, is created 

from the collected group of similar cases. The parameter (P, QRS, and T) with high PS are 

grouped together to generate an overall features list, which indicates the possibilities of 

assigning a given arrhythmia class to a case with a specific feature set (distributed through 

different parameters included in the overall feature list). Accordingly, there will be a different 

feature lists for each arrhythmia, which enhances the accuracy, and at the same time, reduces 

the computational burden. The feature list of each arrhythmia is predicted from similar cases 

collected from the training data based on general features. The collected cases are used to 

calculate PS. First, the ten most similar arrhythmia cases are collected. Then collected 

categories are manually labeled with binary maps BMs, which indicate the presence “1” or 

absence “0” of feature F related to a specific parameter in representing a specific type of 

arrhythmia:  
 






otherwise      0

positive is F  if       1
)(FBM Arrhythmia

                  [39, 52]                                    (9) 

 

Thirty binary labeled maps BMs (ten for each parameter P, QRS, and T) are combined 

together to create one general PS for any arrhythmia. As shown in Fig. 3, the general PS is 

created through four steps: Gaussian-weighted sum for BMs, first maximization process O
1P

, 

Gaussian-weighted average O
2P

, and final maximization process O
3P 

[52]. 
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Fig. 3. ECG feature selection steps [39] 

3.2.1 Weighted Sum 

The ten binary maps BMp for each parameter P  {P, QRS, T} are smoothed out using an 

isotropic Gaussian function gσsum for each feature F.  
 





n

f

psump

P fBMfgBMO
1

1 ][  ][)(                    [39, 52]                                    (10) 

 

This affords the summation of the weighted features related to each BMp, which can be used 

to detect an arrhythmia. 

 

3.2.2 First Maximization Process 

The maximum value among the ten outputs O
1P 

(BMp) is taken for every parameter P to detect 

an arrhythmia:   
 

)( )(2 1

p

P

p BMOMAXpPO                       [39, 52]                                 (11) 

 

3.2.3 Gaussian Weighted Average 

The output O
2P

 is smoothed using a Gaussian function gavg (p) whose mean is the target 

parameter P:  
 

)]()([
1

)( 23 pOpg
f

pO P

avg

P                      [39, 52]                                  (12) 

 

where gσavg(p) is the standard deviation for each parameter P, and f is the number of features 

used to describe a specific arrhythmia. This affords a smooth distribution of scores centered on 

the target parameter P. 
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3.2.4 Final Maximization Process 

The maximum value among O 
3P

 (p) for the three parameters is taken.   
 

 pOMAXpPO p

p

3 )(4                        [39, 52]                                (13) 

 

As described earlier, PS indicates the importance of a parameter P in detecting a specific type 

of arrhythmia. Therefore, we take the parameter with the highest PS and consider it as the main 

parameter. Then, we calculate the ratio of the other two parameters to the main parameter. If 

the ratio is more than or equal to 75%, we consider that parameter as also necessary to detect 

that type of arrhythmia. Consequently, the unique feature set to describe any arrhythmia in a 

very sensitive manner is obtained. 

4. Experimental Results and Analysis 

We used a database generated at the University of California, Irvine [53], containing 279 

attributes and 452 instances [54]. Classes from 01 to 15 were distributed to describe normal 

rhythm, ischemic changes (coronary artery disease), old anterior myocardial infarction, old 

inferior myocardial infarction, sinus tachycardia, sinus bradycardia, ventricular premature 

Contraction (PVC), supraventricular premature contraction, left bundle branch block, right 

bundle branch block, first-degree atrioventricular (AV) block, second-degree AV block, 

third-degree AV block, left ventricle hypertrophy, atrial fibrillation or flutter, and others types 

of arrhythmias, respectively. Some instances related to specific arrhythmia classes were 

duplicated, generating overall 573 instances. The experiments were conducted in the WEKA 

3.6.1 environment on a PC with an Intel Core 2 Duo processor running at 2.40 GHz with 2.00 

GB RAM. The parameters were set as follows: in equation (6), δremove = 1.0, and in equation (8), 

θremove = 5.0. 

4.1 Necessity for including all ECG Features 

First, we prove the necessity for including the P and T waves in conjunction with the QRS 

complex to evaluate arrhythmias correctly. We measured the performance of five different 

algorithms with different sets of features: OneR, J48, naïve Bayes, dagging, and bagging. 

Table 1 summarizes the accuracy obtained by each algorithm. 
 

Table 1. Accuracy of different algorithms according to ECG parameters included [39, 52] 

Parameters OneR J48 Naïve Bayes Dagging Bagging 

QRS only 60.4 91.2 76.5 63.5 81.0 

QRS + P 60.4 91.4 77 62.4 81.6 

QRS + T 61.3 91.2 76.7 63.0 82.3 

QRS + P + T 61.1 92.3 77.7 64.2 83.0 

4.2 ECG Features Selection 

Second, as shown in Table 2, we calculated the PSs related to each arrhythmia in the database 

[53] obtained by the feature selection method. The specifications of the selected PSs among the 

three parameters are considered depending on the percentage of each PS in relation to the main 

(maximum) PS. We consider only the parameters with a ratio to the maximum that is equal to 
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or greater than 0.75. 

We found that 23.1% of the cases require P, QRS, and T; 38.5% require only the QRS; 

30.8% require P and QRS; and the last 7.6% requires P only. This means that each arrhythmia 

can be described in much a more accurate manner using just the parameters specified. 

 

 

Table 2. PSs obtained by feature selection method [39] 

Arrhythmia PS (P) PS (QRS) PS (T) 

Normal rhythm 85.5 93.7 71.0 

Ischemic changes (Coronary Artery Disease) 62.1 87.2 55.6 

Old Anterior Myocardial Infarction 66.2 89.4 60.5 

Old Inferior Myocardial Infarction 67.4 91.6 63.9 

Sinus tachycardia 76.9 88.9 61.7 

Sinus bradycardia 78.7 90.7 67.3 

Ventricular Premature Contraction (PVC) 86.8 95.0 82.8 

Supraventricular Premature Contraction 89.9 67.0 52.0 

Left bundle branch block 71.0 97.8 69.1 

Right bundle branch block 70.6 94.9 70.7 

Left ventricle hypertrophy 81.7 96.6 71.5 

Atrial Fibrillation or Flutter 87.9 94.4 68.2 

Others 83.2 92.1 78.6 

 

4.3 Arrhythmia Detection 

Fig. 4 compares the accuracies achieved by the OneR, J48, naïve Bayes, dagging, and bagging 

methods when using the hybrid technique, active learning, and feature selection. We also show 

their original performance without the proposed method for comparison. 

Fig. 5 illustrates the improvements due to the proposed active learning, feature selection, 

and hybrid techniques in all algorithms tested here. We specifically compare the best-case 

accuracies when including all features related to the P, QRS, and T waves with that obtained 

after using the hybrid technique or just one of its components (active learning and feature 

selection) 
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Fig. 4. Accuracy achieved by different methods when using hybrid technique and its components 

 

 
Fig. 5. Accuracy improvement achieved by hybrid techniche and its components 

These figures clearly show that the active learning, feature selection, and hybrid methods 

improve the detection accuracy for the different types of arrhythmia. The improvement is 

noticeable for all the algorithms with different weights due to their mechanisms. Specifically, 

improvements of 14.89, 7.37, 19.95, 29.58, and 8.92 % percentage were achieved in 

performance for OneR, J48, naïve Bayes, dagging, and bagging, respectively, when applying 

the hybrid technique. In general, these are significant improvements. 

It is also interesting to compare the accuracy of our hybrid technique using the J48 algorithm 

with that of other methods presented in the literature. Methods from eight representative 

studies were chosen for this comparison, the including patient-adaptive model (PAM) [10], 

Fourier transform and neural network (FTNN) [13], dynamic learning and parameter tuning 

with decision tree (DLPTT) [39], statistical features and fuzzy hybrid neural network 

(SFHNN) [41], principle component with independent component analysis (PCICA) [22], 

wavelet transform and neural network (WTNN) [15], ECG classification by combining three 

different kinds of features and neuro-fuzzy network (FNFN) [55], and independent component 
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analysis with neural network (ICANN) [23]. Table 3 summarizes the comparative results of 

these methods, in which the last row lists the results of our model. Among the eight methods, 

the proposed method outperforms the other methods with an impressive accuracy of 99.1% in 

discriminating 15 ECG beat types.   

 
Table 3. Accuracy comparison with other methods 

Method Number of arrhythmia Accuracy % 

PAM 4 94.0 

FTNN 3 98.0 

DLPTT 

SFHNN 

15 

7 

98.1 

96.1 

PCICA 5 85.0 

WTNN 13 96.8 

FNFN 4 98.0 

ICNNN 8 98.7 

Proposed model 15 99.1 

4.4 Noise Effects 

The performance of the proposed hybrid technique and its components was further tested in 

the presence of noisy data. For this purpose, random noise was applied to the datasets for both 

training and validation. Different noise levels were investigated: 1%, greater than 1%, and less 

than or equal to 3%, greater than 3%, and less than or equal to 6% and greater than 6% and less 

than or equal to 10%. Furthermore, the noise was applied to all ECG parameters: P, QRS, and 

T waves. The measurement of the accuracy after applying each degree of noise was calculated 

by taking averages.  

The results obtained in the presence of the noisy data, as presented in Fig. 6, show a 

reduction in accuracy in the presence of noise. The experiment was also conducted using the 

same methods OneR, J48, naïve Bayes, bagging, and dagging. We found that OneR performed 

the worst when using the individual components alone. However, dagging was the worst with 

the hybrid technique. Furthermore, J48 was the best when using active learning, and feature 

selection methods, and the hybrid technique.  
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 (A)  

 
 (B) 

 

 
(C) 

Fig. 6. Accuracy reduction under noise 

 

 

The performance of the hybrid technique, active learning, and feature selection methods at 

different noise levels are summarized in Table 4. 

 
Table 4. Summary of the reduction in accuracy for hybrid technique and its components under different 

levels of noise 

Method 1% 1% >3% 3% > 6% 6% > 10% 

Active learning no no small Very large 

Feature Selection no no Very Small Very large 

Hybrid technique no no Very small Large 

 

As seen in the table, 1% noise had no influence on the performance of the hybrid technique, 
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active learning, or feature selection methods. Noise levels greater than 1% and less than or 

equal 3% also has no affects on the performance of active learning neither feature selection nor 

the hybrid technique. Between 3% and 6%, the performance of active learning start declining 

significantly while feature selection was only affected slightly, but the hybrid technique very 

slightly. At between 6% and 10% noise, however, all methods were significantly affected. 

Generally, active learning is very sensitive to noise because of the mechanism of learning, 

which involves selecting a proper group of training data. Thus, when searching a data set that 

does not matching the overall data at all, the performance decreases significantly. Feature 

selection is much more robust to noise because there are always a limited number of features. 

The performance is also much better with the hybrid technique, since it is a combination of 

active learning and feature selection. Both components are implemented in parallel, and so 

there is no need for synchronization. Thus, it is very rare that noises affect the same features 

and are evaluated in the wrong way by both methods. 

4.5 Speed 

Fig. 7 shows the training and validation times for the J48 classifier with the three methods: 

active learning, feature selection, and the hybrid technique. As can be seen, feature selection 

greatly reduces the computational time for training and validation. Analogously, a smaller 

number of training samples also leads to a decrease in time required for classifying unknown 

samples. However, active learning takes the most computational time because the process of 

selecting the right group of data is very complicated. Consequently, the speed of the hybrid 

technique is affected by the negative performance of active learning. 

 

 
Fig. 7. Training and validation time to detect 15 arrhythmias using hybrid technique and its 

components 

5. Conclusion 

Cardiac health monitoring is a challenging problem in the field of data mining and knowledge 

extraction, and has received considerable attention over the past few years because of its 

importance in saving lives and reducing health risks. Today, cardiac health monitoring has 

reached a level of maturity when operating directly on or off-line. However, current methods 

are far from adequate for automated, remote cardiac health monitoring by detecting 
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arrhythmias in real time. This is partly because of inter- and intra-patient variability. Thus, 

developing one classifier model to satisfy all patients in different situations using static 

training datasets is not practical. Furthermore, analyzing the QRS, P-wave, and other elements 

of ECG, and measuring the time interval between these elements, is necessary for real-time 

cardiac monitoring. This is technically infeasible with current systems because of 

computational limitations. 

In this paper, we presented a hybrid technique as a proposed solution to solve these 

problems. The performance of our framework was evaluated using various approaches, which 

demonstrate their effectiveness. In future, we plan to perform more experiments to account for 

interrelated ECG features. 
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