• Title/Summary/Keyword: Real-Time GPS

Search Result 792, Processing Time 0.028 seconds

A Study on a Location Determination System using Infrastructure Information of a WLAN Network (무선랜 네트워크의 인프라 정보를 이용한 위치측위 시스템에 관한 연구)

  • Lim, Joong-Seon;Choi, Gyung-Hyun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.10 no.6
    • /
    • pp.98-107
    • /
    • 2011
  • In this paper, we propose the location determination system of an agent mobile device using the information provided by the WLAN(Wireless LAN) infrastructure. This system is configured as a typical ESS(Extended Service Set)-type WLAN structure with real-time location positioning engine and thru AP(Access Point) controller. The positioning engine collects the information of agent devices using SNMP(Small Network Management Protocol) thru AP controller and utilize those information as Cell ID. for LBS(Location Based Service). In the result of a real office environment implementation, the average success rate of inter-AP roaming is measured to 62.5% and the duration time of the device information update within the AP is average of 11 second of time, which means this system is adaptable to the location based service of above average accuracy but somewhat less urgency.

Implementation and Performance Evaluation of Environmental Data Monitoring System for the Fish Farm (양식장 환경 데이터 모니터링 시스템의 구현 및 성능 평가)

  • Wahyutama, Aria Bisma;Hwang, Mintae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.5
    • /
    • pp.743-754
    • /
    • 2022
  • This paper contains the results of the development and performance evaluation of the environmental data monitoring system for the fish farm. For the hardware development, the analogue sensor is used to collect dissolved oxygen, pH, salinity, and temperature of the fish farm water, and the digital sensor is used for collecting ambient temperature, humidity, and location information via a GPS module to be sent to cloud-based Firebase DB. A set of LoRa transmitters and receivers is used as a communication module to upload the collected data. The data stored in Firebase is retrieved as a graph on a web and mobile application to monitor the environmental data changes in real-time. A notification will be delivered if the collected data is outside the determined optimal value. To evaluate the performance of the developed system, a response time from hardware modules to web and mobile applications is ranging from 6.2 to 6.85 seconds, which indicates satisfactory results.

The Architecture of an Intelligent Digital Twin for a Cyber-Physical Route-Finding System in Smart Cities

  • Habibnezhad, Mahmoud;Shayesteh, Shayan;Liu, Yizhi;Fardhosseini, Mohammad Sadra;Jebelli, Houtan
    • International conference on construction engineering and project management
    • /
    • 2020.12a
    • /
    • pp.510-519
    • /
    • 2020
  • Within an intelligent automated cyber-physical system, the realization of the autonomous mechanism for data collection, data integration, and data analysis plays a critical role in the design, development, operation, and maintenance of such a system. This construct is particularly vital for fault-tolerant route-finding systems that rely on the imprecise GPS location of the vehicles to properly operate, timely plan, and continuously produce informative feedback to the user. More essentially, the integration of digital twins with cyber-physical route-finding systems has been overlooked in intelligent transportation services with the capacity to construct the network routes solely from the locations of the operating vehicles. To address this limitation, the present study proposes a conceptual architecture that employs digital twin to autonomously maintain, update, and manage intelligent transportation systems. This virtual management simulation can improve the accuracy of time-of-arrival prediction based on auto-generated routes on which the vehicle's real-time location is mapped. To that end, first, an intelligent transportation system was developed based on two primary mechanisms: 1) an automated route finding process in which predictive data-driven models (i.e., regularized least-squares regression) can elicit the geometry and direction of the routes of the transportation network from the cloud of geotagged data points of the operating vehicles and 2) an intelligent mapping process capable of accurately locating the vehicles on the map whereby their arrival times to any point on the route can be estimated. Afterward, the digital representations of the physical entities (i.e., vehicles and routes) were simulated based on the auto-generated routes and the vehicles' locations in near-real-time. Finally, the feasibility and usability of the presented conceptual framework were evaluated through the comparison between the primary characteristics of the physical entities with their digital representations. The proposed architecture can be used by the vehicle-tracking applications dependent on geotagged data for digital mapping and location tracking of vehicles under a systematic comparison and simulation cyber-physical system.

  • PDF

A Study on Time Synchronization Method for Analyzing the Network Performance of Remote Control System (원격운용 시스템의 네트워크 성능분석을 위한 시간동기화 방안에 관한 연구)

  • Yang, DongWon;Kim, Namgon;Kim, Dojong
    • Journal of IKEEE
    • /
    • v.26 no.2
    • /
    • pp.141-149
    • /
    • 2022
  • With the development of artificial intelligence and unmanned technologies, the remote surveillance/autonomous driving systems have been actively researched. For an effective performance analysis of the developed remote control system, it is important to record the data of it in real time. In addition, in order to analyze the performance between the control system and the remote system, the recorded data from them should be synchronized with time. In this paper we proposed a novel time synchronization method for the remote control system. The proposed remote control system satisfies the time difference of the recorded data within 1 ms, and we can reduce the time difference by using a CPU shielding and affinity setting. The performance of the proposed method was proved through various network data storage experiments. And the experiments confirmed that the proposed method can be applied to recording devices of unmanned ground vehicles and control vehicles. The proposed method will be used as a method for analyzing network data of UGV-R (Unmanned Ground Vehicle - Reconnaissance).

Automatic Generation Method of Road Data based on Spatial Information (공간정보에 기반한 도로 데이터 자동생성 방법)

  • Joo, In-Hak;Choi, Kyoung-Ho;Yoo, Jae-Jun;Hwang, Tae-Hyun;Lee, Jong-Hun
    • Journal of Korea Spatial Information System Society
    • /
    • v.4 no.2 s.8
    • /
    • pp.55-64
    • /
    • 2002
  • VEfficient generation of road data is one of the most important issues in GIS (Geographic Information System). In this paper, we propose a hybrid approach for automatic generation of road data by combining mobile mapping and image processing techniques. Mobile mapping systems have a form of vehicle equipped with CCD camera, GPS, and INS. They can calculate absolute position of objects that appear in acquired image by photogrammetry, but it is labor-intensive and time-consuming. Automatic road detection methods have been studied also by image processing technology. However, the methods are likely to fail because of obstacles and exceptive conditions in the real world. To overcome the problems, we suggest a hybrid method for automatic road generation, by exploiting both GPS/INS data acquired by mobile mapping system and image processing algorithms. We design an estimator to estimate 3-D coordinates of road line and corresponding location in an image. The estimation process reduces complicated image processing operations that find road line. The missing coordinates of road line due to failure of estimation are obtained by cubic spline interpolation. The interpolation is done piecewise, separated by rapid change such as road intersection. We present experimental results of the suggested estimation and interpolation methods with image sequences acquired by mobile mapping system, and show that the methods are effective in generation of road data.

  • PDF

Investigating Applicability of Unmanned Aerial Vehicle to the Tidal Flat Zone (조간대 갯벌에서 무인항공기 활용 가능성에 관한 연구 - 수치표고모델을 중심으로 -)

  • Kim, Bum-Jun;Lee, Yoon-Kyung;Choi, Jong-Kuk
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.5
    • /
    • pp.461-471
    • /
    • 2015
  • In this study, we generated orthoimages and Digital Elevation Model (DEM) from Unmanned Aerial Vehicle (UAV) to confirm the accuracy of possibility of geospatial information system generation, then compared the DEM with the topographic height values measured from Real Time Kinematic-GPS (RTK-GPS). The DEMs were generated from aerial triangulation method using fixed-wing UAV and rotary-wing UAV, and DEM based on the waterline method also generated. For the accurate generation of mosaic images and DEM, the distorted images occurred by interior and exterior orientation were corrected using camera calibration. In addition, we set up the 30 Ground Control Points (GPCs) in order to correct of the UAVs position error. Therefore, the mosaic images and DEM were obtained with geometric error less than 30 cm. The height of generated DEMs by UAVs were compared with the levelled elevation by RTK-GPS. The value of R-square is closely 1. From this study, we could confirm that accurate DEM of the tidal flat can be generated using UAVs and these detailed spatial information about tidal flat will be widely used for tidal flat management.

Availability Assessment of Single Frequency Multi-GNSS Real Time Positioning with the RTCM-State Space Representation Parameters (RTCM-SSR 보정요소 기반 1주파 Multi-GNSS 실시간 측위의 효용성 평가)

  • Lee, Yong-Chang;Oh, Seong-Jong
    • Journal of Cadastre & Land InformatiX
    • /
    • v.50 no.1
    • /
    • pp.107-123
    • /
    • 2020
  • With stabilization of the recent multi-GNSS infrastructure, and as multi-GNSS has been proven to be effective in improving the accuracy of the positioning performance in various industrial sectors. In this study, in view that SF(Single frequency) GNSS receivers are widely used due to the low costs, evaluate effectiveness of SF Real Time Point Positioning(SF-RT-PP) based on four multi-GNSS surveying methods with RTCM-SSR correction streams in static and kinematic modes, and also derive response challenges. Results of applying SSR correction streams, CNES presented good results compared to other SSR streams in 2D coordinate. Looking at the results of the SF-RT-PP surveying using SF signals from multi-GNSS, were able to identify the common cause of large deviations in the altitude components, as well as confirm the importance of signal bias correction according to combinations of different types of satellite signals and ionospheric delay compensation algorithm using undifferenced and uncombined observations. In addition, confirmed that the improvement of the infrastructure of Multi-GNSS allows SF-RT-SPP surveying with only one of the four GNSS satellites. In particular, in the case of code-based SF-RT-SPP measurements using SF signals from GPS satellites only, the difference in the application effect between broadcast ephemeris and SSR correction for satellite orbits/clocks was small, but in the case of ionospheric delay compensation, the use of SBAS correction information provided more than twice the accuracy compared to result of the Klobuchar model. With GPS and GLONASS, both the BDS and GALILEO constellations will be fully deployed in the end of 2020, and the greater benefits from the multi-GNSS integration can be expected. Specially, If RT-ionospheric correction services reflecting regional characteristics and SSR correction information reflecting atmospheric characteristics are carried out in real-time, expected that the utilization of SF-RT-PPP survey technology by multi-GNSS and various demands will be created in various industrial sectors.

TMC (Tracker Motion Controller) Using Sensors and GPS Implementation and Performance Analysis (센서와 GPS를 이용한 TMC의 구현 및 성능 분석)

  • Ko, Jae-Hong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.2
    • /
    • pp.828-834
    • /
    • 2013
  • In this paper, TMC (Tracker Motion Controller) as one of the many research methods for condensing efficiency improvements can be condensed into efficient solar system configuration to improve the power generation efficiency of the castle with Concentrated solar silicon and photovoltaic systems (CPV)experiments using PV systems. Microprocessor used on the solar system, tracing the development of solar altitude and latitude of each is calculated in real time. Also accept the value from the sensor, motor control and communication with the central control system by calculating the value of the current position of the sun, there is a growing burden on the applicability. Through the way the program is appropriate for solar power systems and sensors hybrid-type algorithm was implemented in the ARM core with built-in TMC, Concentrated CPV system compared to the existing PV systems, through the implementation of the TMC in the country's power generation efficiency compared and analyzed. Sensor method using existing experimental results Concentrated solar power systems to communicate the value of GPS location tracking method hybrid solar horizons in the coordinate system of the sun's azimuth and elevation angles calculated by the program in the calculations of astronomy through experimental resultslook clear day at high solar irradiation were shown to have a large difference. Stopped after a certain period of time, the sun appears in the blind spot of the sensor, the sensor error that can occur from climate change, however, do not have a cloudy and clear day solar radiation sensor does not keep track of the position of the sun, rather than the sensor of excellence could be found. It is expected that research is constantly needed for the system with ongoing research for development of solar cell efficiency increases to reduce the production cost of power generation, high efficiency condensing type according to the change of climate with the optimal development of the ability TMC.

An Image Management System of Frame Unit on a Hand-held Device Environments (휴대장치 환경을 위한 프레임 단위의 영상 데이터 관리 시스템)

  • Choi, Jun-Hyeog;Yoon, Kyung-Bae;Han, Seung-Jin
    • Journal of the Korea Society of Computer and Information
    • /
    • v.13 no.7
    • /
    • pp.29-36
    • /
    • 2008
  • This paper proposes algorithm for the system that can search for an image of a frame unit, and we implement it. A system already inserts in images after generating the cord that mechanical decoding and identification are possible. We are independent of an external noise in a frame unit, and a system to propose at these papers can search for an image recorded by search condition to include recording date, recording time, a recording place or filming course etc. This system is composed by image insertion wealth to insert data to an image to data image code generation wealth, a frame generating data image code you apply a code generation rule to be fixed in order to express to a price to have continued like data entry wealth, GPS locator values and direction price receiving an image signal, image decoding signals and an image search signal to include search condition, and to have continuity from users each of an image. Also, image decoding we decipher about the noise that was already added from the outsides in a telerecording process, a copy process or storage processes inserted in images by real time, and searching image information by search condition. Consequently we implement decoder, and provide the early system that you use, and we easily insert data code among images. and we can search. and maximization can get precision regarding an image search and use satisfaction as we use algorithm to propose at these papers.

  • PDF

Estimation of channel morphology using RGB orthomosaic images from drone - focusing on the Naesung stream - (드론 RGB 정사영상 기반 하도 지형 공간 추정 방법 - 내성천 중심으로 -)

  • Woo-Chul, KANG;Kyng-Su, LEE;Eun-Kyung, JANG
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.25 no.4
    • /
    • pp.136-150
    • /
    • 2022
  • In this study, a comparative review was conducted on how to use RGB images to obtain river topographic information, which is one of the most essential data for eco-friendly river management and flood level analysis. In terms of the topographic information of river zone, to obtain the topographic information of flow section is one of the difficult topic, therefore, this study focused on estimating the river topographic information of flow section through RGB images. For this study, the river topography surveying was directly conducted using ADCP and RTK-GPS, and at the same time, and orthomosiac image were created using high-resolution images obtained by drone photography. And then, the existing developed regression equations were applied to the result of channel topography surveying by ADCP and the band values of the RGB images, and the channel bathymetry in the study area was estimated using the regression equation that showed the best predictability. In addition, CCHE2D flow modeling was simulated to perform comparative verification of the topographical informations. The modeling result with the image-based topographical information provided better water depth and current velocity simulation results, when it compared to the directly measured topographical information for which measurement of the sub-section was not performed. It is concluded that river topographic information could be obtained from RGB images, and if additional research was conducted, it could be used as a method of obtaining efficient river topographic information for river management.