DOI QR코드

DOI QR Code

Availability Assessment of Single Frequency Multi-GNSS Real Time Positioning with the RTCM-State Space Representation Parameters

RTCM-SSR 보정요소 기반 1주파 Multi-GNSS 실시간 측위의 효용성 평가

  • Lee, Yong-Chang (Department of Urban Engineering, Incheon National University) ;
  • Oh, Seong-Jong (Department of Urban Convergence Engineering, Incheon National University)
  • 이용창 (인천대학교 도시과학대학 도시공학과) ;
  • 오성종 (인천대학교 도시융.복합학과)
  • Received : 2020.05.03
  • Accepted : 2020.06.12
  • Published : 2020.06.30

Abstract

With stabilization of the recent multi-GNSS infrastructure, and as multi-GNSS has been proven to be effective in improving the accuracy of the positioning performance in various industrial sectors. In this study, in view that SF(Single frequency) GNSS receivers are widely used due to the low costs, evaluate effectiveness of SF Real Time Point Positioning(SF-RT-PP) based on four multi-GNSS surveying methods with RTCM-SSR correction streams in static and kinematic modes, and also derive response challenges. Results of applying SSR correction streams, CNES presented good results compared to other SSR streams in 2D coordinate. Looking at the results of the SF-RT-PP surveying using SF signals from multi-GNSS, were able to identify the common cause of large deviations in the altitude components, as well as confirm the importance of signal bias correction according to combinations of different types of satellite signals and ionospheric delay compensation algorithm using undifferenced and uncombined observations. In addition, confirmed that the improvement of the infrastructure of Multi-GNSS allows SF-RT-SPP surveying with only one of the four GNSS satellites. In particular, in the case of code-based SF-RT-SPP measurements using SF signals from GPS satellites only, the difference in the application effect between broadcast ephemeris and SSR correction for satellite orbits/clocks was small, but in the case of ionospheric delay compensation, the use of SBAS correction information provided more than twice the accuracy compared to result of the Klobuchar model. With GPS and GLONASS, both the BDS and GALILEO constellations will be fully deployed in the end of 2020, and the greater benefits from the multi-GNSS integration can be expected. Specially, If RT-ionospheric correction services reflecting regional characteristics and SSR correction information reflecting atmospheric characteristics are carried out in real-time, expected that the utilization of SF-RT-PPP survey technology by multi-GNSS and various demands will be created in various industrial sectors.

최근, Multi-GNSS 위성시스템 인프라 환경의 안정화와 이종 위성 조합 활용에 대한 효용성이 입증되면서 측위, 항법 및 시간 정보 관련 응용 등 다양한 산업 분야에서 실시간 Multi-GNSS 조합 활용의 분위기가 높아지고 있다. 본 연구의 목적은 가장 수요층이 많은 저가형 1주파 GNSS 위성 수신기 사용자를 대상으로 정적 및 동적 환경에서 4가지 Multi-GNSS 측량기법에 RTCM-SSR 보정류(streams)를 적용, Multi- GNSS 위성의 1주파 실시간 단독측위(SF-RT-PP)의 효용성을 평가하고 대응 과제를 도출하는 것이다. SSR 보정류를 4가지 Multi-GNSS 측위 기법에 연계하여 정적 및 동적 시험장에 적용한 결과, CNES의 SSRa00CNE0 서비스가 2차원 좌표성분에서 다른 SSR 보정류에 비해 양호한 결과를 제시하였다. Multi-GNSS 위성의 Carrier를 활용한 SF-RT-PP 측위 결과, 공통적으로 고도성분에서 큰 편차가 발생되었는데 이에 대한 원인 규명 및 SF-RT-PPP 측위에서 비차감 비조합 전리층 지연보정과 이종 위성조합에 따른 신호 Bias 보정의 중요성을 확인할 수 있었다. 또한, Multi-GNSS 위성의 인프라 환경 향상으로 4종의 GNSS 위성 중, 1종 위성만으로도 SF-SPP 측위가 가능함을 확인하였다. 특히, GPS 위성의 1주파 신호만을 활용한 RT-SPP 측위에서 Code 기반 SF-RT-SPP 측위의 경우, 위성궤도/시계 보정관련 보통력과 SSR 보정 간 효과는 미소한 반면, 전리층 보정의 경우는 Klobuchar 모델에 비해 SBAS 보정 정보를 활용한 경우가 높이에서 약 2배 이상의 정확도 향상 효과를 공통적으로 확인할 수 있었다. 향후, 2020년말 Galileo 및 BDS 위성 인프라가 완성되면서 Multi-GNSS 위성의 지역 특성이 반영된 실시간 전리층지연 및 기상특성을 반영한 SSR 조정 서비스가 진행될 경우, SF-RT-PPP 활용성 및 여러 산업부문의 다양한 수요 창출이 기대된다.

Keywords

References

  1. Kang Joon Oh, Lee Yong Chang. 2019. Construction of 3D Spatial Information of Vertical Structure by Combining UAS and Terrestrial LiDAR. Journal of Cadastre & Land InformatiX. 49(2):57-66.
  2. Lee Yong Chang, Kang Joon Oh. 2019. The Precise Three Dimensional Phenomenon Modeling of the Cultural Heritage based on UAS Imagery. Journal of Cadastre & Land InformatiX. 49(1):85-101. https://doi.org/10.22640/LXSIRI.2019.49.1.85
  3. Bahadur B, Nohutcu M. 2018. PPPH: a MATLABbased software for multi-GNSS precise point positioning analysis. GPS Solut. 22:113. https://doi.org/10.1007/s10291-018-0777-z
  4. Berkay Bahadur, Metin Nohutcu. 2019. Multi-GNSS Contribution to Single-Frequency Precise Point Positioning, XXIX International Symposium on "Modern Technologies, Education and Professional Practice in Geodesy and Related Fields"
  5. Cai, C, Liu, Z, Luo, X. Single-frequency. 2013. ionosphere-free precise point positioning using combined GPS and GLONASS observations. J. Navig. 66:417-434. https://doi.org/10.1017/S0373463313000039
  6. Cai C, Gao Y, Pan L, Zhu J. 2015. Precise point positioning with quad-constellations: GPS, BeiDou, GLONASS, and Galileo. Adv. Space Res. 56(1):133-143. https://doi.org/10.1016/j.asr.2015.04.001
  7. Chen J, Huang L, Liu L, Wu P, Qin X. 2017. Applicability analysis of VTEC derived from the sophisticated Klobuchar model in China. ISPRS Int J Geo-Inf. 6(3):75. https://doi.org/10.3390/ijgi6030075
  8. Choy SL. 2009 An investigation into the accuracy of single frequency precise point positioning. Ph.D. thesis. RMIT University, Australia.
  9. Daqian Lyu, Fangling Zeng, Xiaofeng Ouyang, Haichuan Zhang. 2020. Real-time clock comparison and monitoring with multi-GNSS precise point positioning: GPS, GLONASS and Galileo. Advances in Space Research. 65:560-571. https://doi.org/10.1016/j.asr.2019.10.029
  10. Gerhard Wubbena, Martin Schmitz, Jannes Wubbena. 2017. SSR & RTCM-Current Status, 4th EUPOS Technical Meeting November.
  11. Hernandez-Pajares M, Roma-Dollase D, Garcia-Fernandez M et al. 2018. GPS Solut. 2018, 22:102. https://doi.org/10.1007/s10291-018-0767-1
  12. Hoque MM, Jakowski N. 2015. An alternative ionospheric correction model for global navigation satellite systems. J Geod. 89(4):391-406. https://doi.org/10.1007/s00190-014-0783-z
  13. Ju Hong, Rui Tu, Rui Zhang, Lihong Fan, Pengfei Zhang, Junqiang Han. 2020. Contribution analysis of QZSS to single-frequency PPP of GPS/BDS/GLONASS/Galileo, Advances in Space Research.
  14. Junbo Shi, Chenhao Ouyang, Wenjie Peng, Yongshuai Huang and Chaoqian Xu. 2017. A Simplified BDS Broadcast Ephemeris and State Space Representative (SSR) Matching Method for BDS-only Real-time Precise Point Positioning (PPP). Digital Object Identifier. 10:1109.
  15. Klobuchar JA. 1987. Ionospheric time-delay algorithm for single-frequency GPS users. IEEE Trans Aerosp Electron Syst. 23(3):325-332. https://doi.org/10.1109/TAES.1987.310829
  16. Kouba J, Heroux P. 2001. Precise Point Positioning Using IGS Orbit and Clock Products. GPS Solut. 5 (2):12-28. https://doi.org/10.1007/PL00012883
  17. Krietemeyer A, Ten Veldhuis,M-C, Van der Marel H, Realini E, van de Giesen N. 2018. Potential of Cost-Efficient Single Frequency GNSS Receivers for Water Vapor Monitoring. Remote Sens. 10(9):1493. https://doi.org/10.3390/rs10091493
  18. Liang Li, Chun Jia, Lin Zhao, Jianhua Cheng, Jianxu Liu and Jicheng Ding. 2016. Real-Time Single Frequency Precise Point Positioning Using SBAS Corrections. Sensors 16:1261. https://doi.org/10.3390/s16081261
  19. Liang Wang, Zishen Li, Maorong Ge, Frank Neitzel, Xiaoming Wang & Hong Yuan. 2019. Investigation of the performance of real-time BDS-only precise point positioning using the IGS real-time service, GPS Solutions volume 23, Article number: 66.
  20. Lin Pan, Xiaohong Zhang, Jingnan Liu, Xingxing Li and Xin Li. 2017. Performance Evaluation of Single-frequency Precise Point Positioning with GPS, GLONASS, BeiDou and Galileo. THE JOURNAL OF NAVIGATION, 1-18.
  21. Mahmoud Abd Rabbou, Adel El-Shazly & Kamal Ahmed. 2017. Comparative analysis of multiconstellation GNSS single-frequency precise point positioning. Survey Review. 373-382.
  22. Mohamed Elsobeiey SalimAl-Harbi. 2016. Performance of real-time Precise Point Positioning using IGS real-time service GPS Solutions volume 20:565-571. https://doi.org/10.1007/s10291-015-0467-z
  23. Montenbruck, O. 2003. Kinematic GPS positioning of LEO satellites using ionosphere-free single frequency measurements. Aerosp. Sci. Technol. 7:396-405. https://doi.org/10.1016/S1270-9638(03)00034-8
  24. Montenbruck O, Steigenberger P, Prange L, Deng Z, Zhao Q, Perosanz F, Romero I, Noll C, Sturze A, Weber G, Schmid R, MacLeod K, Schaer S. 2017. The Multi-GNSS Experiment (MGEX) of the International GNSS Service (IGS)-Achievements, prospects and challenges. Adv. Space Res. 59(7):1671-1697. https://doi.org/10.1016/j.asr.2017.01.011
  25. Nava B, Coisson P, Radicella SM. 2008. A new version of the NeQuick ionosphere electron density model. J Atmos Terr Phys. 70(15):1856-1862. https://doi.org/10.1016/j.jastp.2008.01.015
  26. Paziewski J, Sieradzki R, Baryla R. 2018. Multi-GNSS high-rate RTK, PPP and novel direct phase observation processing method: application to precise dynamic displacement detection. Meas Sci Technol. 29:35002. https://doi.org/10.1088/1361-6501/aa9ec2
  27. Roma-Dollase D, Hernandez-Pajares M, Krankowski A, Kotulak K, Ghoddousi-Fard R. et al. 2018. Consistency of seven different GNSS global ionospheric mapping techniques during one solar cycle. J Geod. 92(6):691-706. https://doi.org/10.1007/s00190-017-1088-9
  28. Yigit CO, Gurlek E. 2017. Experimental testing of high-rate GNSS precise point positioning (PPP) method for detecting dynamic vertical displacement response of engineering structures. Geomat Nat Hazards Risk. 8(2):893-904. https://doi.org/10.1080/19475705.2017.1284160
  29. Shaocheng Zhang, Shikang Du, Wei Li and Guangxing Wang. 2019. Evaluation of the GPS Precise Orbit and Clock Corrections from MADOCA Real-Time Products. Sensors. 19:2580. https://doi.org/10.3390/s19112580
  30. Shi J, Yuan X, Cai Y, Wang G. 2017. GPS real-time precise point positioning for aerial triangulation. GPS Solut. 21(2):405-414. https://doi.org/10.1007/s10291-016-0532-2
  31. Shuhui Li, Lihua Li, Shuqing Wang, Junhuan Peng, Yujian Xu & Yaohui Zhao. 2017. Comparative analysis of three ionospheric broadcast models for global navigation satellite systems. Acta Geophysica. 65:395-410. https://doi.org/10.1007/s11600-017-0030-0
  32. Tegedor J, Ovstedal O, Vigen E. 2014. Precise orbit determination and point positioning using GPS, GLONASS, Galileo and BeiDou. J. Geod. Sci. 4(1):65-73.
  33. Tomoji TAKASU, 2015, QZSS-1 Precise Orbit Determination by MADOCA, International Symposium on GNSS 2015 Kyoto.
  34. Xingxing Li, Maorong Ge, Xiaolei Dai, Xiaodong Ren, Mathias Fritsche, Jens Wickert, Harald Schuh. 2015. Accuracy and reliability of multi- GNSS real-time precise positioning: GPS, GLONASS, BeiDou, and Galileo. Journal of Geodesy.
  35. Yunck TP. 1993. Coping with the atmosphere and ionosphere in precise satellite and ground positioning, Washington DC. Am Geophys Union Geophys Monogr Ser. 73:1-16.
  36. Zumberge JF, Heflin MB, Jefferson DC, Watkins MM, Webb FH. 1997. Precise point positioning for the efficient and robust analysis of GPS data from large networks. J. Geophys. Res.- Solid Earth. 102 (B3):5005-5017. https://doi.org/10.1029/96JB03860
  37. Ministry of Science and ICT News release. 2018. Korea's new challenge to space (The 3rd Basic Space Development Promotion Plan of the 14th National Space Commission).
  38. Beidou Navigation Satellite System. 2020. [Internet]. [en.beidou.gov.cn]. Last accessed 20 April 2020.
  39. T. Takasu. 2013. RTKLIB ver. 2.4.2 Manual. Beidou Navigation Satellite System. 2020. [Internet]. [en.beidou.gov.cn]. Last accessed 20 April 2020.
  40. European GNSS Service Centre. 2020. [Internet]. [gsc-europa.eu]. Last accessed 20 April 2020.
  41. GPS: The Global Positioning System. 2020. [Internet]. [gps.gov]. Last accessed 20 April 2020.
  42. HEXAGON Veripos. 2019. [Internet]. [veripos.com]. Last accessed 18 April 2020.
  43. IGS-Real Time Service. 2020. [Internet]. [www.igs.org/rts]. Last accessed 22 April 2020.
  44. Madoca Real-Time Products. 2020. [Internet]. [ssl.tksc.jaxa.jp/madoca/public/public_index_en.html]. Last accessed 21 December 2019.
  45. NAVCAST High Accuracy Correction Service. 2019. [Internet]. [spaceopal.com/navcast]. Last accessed 21 December 2019.
  46. NAVCOM A John Deere Company. 2019. [Internet]. [www.navcomtech.com]. Last accessed 15 April 2020.
  47. Open Data Portal. 2019. [Internet]. [gnssdata.or.kr]. Last accessed 16 December 2019.
  48. RTCM. 2020. [Internet]. [www.rtcm.org]. Last accessed 20 April 2020.
  49. RTK-explorer. 2020. [Internet]. [rtkexplorer.com]. Last accessed 18 April 2020.
  50. The PPP Wizard Project. 2020. [Internet]. [www.ppp-wizard.net]. Last accessed 22 April 2020.
  51. Trimble Positioning Services. 2020. [Internet]. [positioningservices.trimble.com]. Last accessed 31 March 2020.
  52. U-Blox. 2019. [Internet]. [www.U-Blox.com]. Last accessed 3 December 2019.

Cited by

  1. UAS, CRP 및 지상 LiDAR 융합기반 와형석조여래불의 3차원 재현과 고증 연구 vol.51, pp.1, 2020, https://doi.org/10.22640/lxsiri.2021.51.1.111