• Title/Summary/Keyword: Real-Time Forecasting System

Search Result 202, Processing Time 0.023 seconds

A Conceptual Design of Knowledge-based Real-time Cyber-threat Early Warning System (지식기반 실시간 사이버위협 조기 예.경보시스템)

  • Lee, Dong-Hwi;Lee, Sang-Ho;J. Kim, Kui-Nam
    • Convergence Security Journal
    • /
    • v.6 no.1
    • /
    • pp.1-11
    • /
    • 2006
  • The exponential increase of malicious and criminal activities in cyber space is posing serious threat which could destabilize the foundation of modem information society. In particular, unexpected network paralysis or break-down created by the spread of malicious traffic could cause confusion and disorder in a nationwide scale, and unless effective countermeasures against such unexpected attacks are formulated in time, this could develop into a catastrophic condition. As a result, there has been vigorous effort and search to develop a functional state-level cyber-threat early-warning system however, the efforts have not yielded satisfying results or created plausible alternatives to date, due to the insufficiency of the existing system and technical difficulties. The existing cyber-threat forecasting and early-warning depend on the individual experience and ability of security manager whose decision is based on the limited security data collected from ESM (Enterprise Security Management) and TMS (Threat Management System). Consequently, this could result in a disastrous warning failure against a variety of unknown and unpredictable attacks. It is, therefore, the aim of this research to offer a conceptual design for "Knowledge-based Real-Time Cyber-Threat Early-Warning System" in order to counter increasinf threat of malicious and criminal activities in cyber suace, and promote further academic researches into developing a comprehensive real-time cyber-threat early-warning system to counter a variety of potential present and future cyber-attacks.

  • PDF

A Simple Ensemble Prediction System for Wind Power Forecasting - Evaluation by Typhoon Bolaven Case - (풍력예보를 위한 단순 앙상블예측시스템 - 태풍 볼라벤 사례를 통한 평가 -)

  • Kim, Jin-Young;Kim, Hyun-Goo;Kang, Yong-Heack;Yun, Chang-Yeol;Kim, Ji-Young;Lee, Jun-Shin
    • Journal of the Korean Solar Energy Society
    • /
    • v.36 no.1
    • /
    • pp.27-37
    • /
    • 2016
  • A simple but practical Ensemble Prediction System(EPS) for wind power forecasting was developed and evaluated using the measurement of the offshore meteorological tower, HeMOSU-1(Herald of Meteorological and Oceanographic Special Unite-1) installed at the Southwest Offshore in South Korea. The EPS developed by the Korea Institute of Energy Research is based on a simple ensemble mean of two Numerical Weather Prediction(NWP) models, WRF-NMM and WRF-ARW. In addition, the Kalman Filter is applied for real-time quality improvement of wind ensembles. All forecasts with EPS were analyzed in comparison with the HeMOSU-1 measurements at 97 m above sea level during Typhoon Bolaven episode in August 2012. The results indicate that EPS was in the best agreement with the in-situ measurement regarding (peak) wind speed and cut-out speed incidence. The RMSE of wind speed was 1.44 m/s while the incidence time lag of cut-out wind speed was 0 hour, which means that the EPS properly predicted a development and its movement. The duration of cut-out wind speed period by the EPS was also acceptable. This study is anticipated to provide a useful quantitative guide and information for a large-scale offshore wind farm operation in the decision making of wind turbine control especially during a typhoon episode.

Chance-constrained Scheduling of Variable Generation and Energy Storage in a Multi-Timescale Framework

  • Tan, Wen-Shan;Abdullah, Md Pauzi;Shaaban, Mohamed
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.5
    • /
    • pp.1709-1718
    • /
    • 2017
  • This paper presents a hybrid stochastic deterministic multi-timescale scheduling (SDMS) approach for generation scheduling of a power grid. SDMS considers flexible resource options including conventional generation flexibility in a chance-constrained day-ahead scheduling optimization (DASO). The prime objective of the DASO is the minimization of the daily production cost in power systems with high penetration scenarios of variable generation. Furthermore, energy storage is scheduled in an hourly-ahead deterministic real-time scheduling optimization (RTSO). DASO simulation results are used as the base starting-point values in the hour-ahead online rolling RTSO with a 15-minute time interval. RTSO considers energy storage as another source of grid flexibility, to balance out the deviation between predicted and actual net load demand values. Numerical simulations, on the IEEE RTS test system with high wind penetration levels, indicate the effectiveness of the proposed SDMS framework for managing the grid flexibility to meet the net load demand, in both day-ahead and real-time timescales. Results also highlight the adequacy of the framework to adjust the scheduling, in real-time, to cope with large prediction errors of wind forecasting.

Real Time Current Prediction with Recurrent Neural Networks and Model Tree

  • Cini, S.;Deo, Makarand Chintamani
    • International Journal of Ocean System Engineering
    • /
    • v.3 no.3
    • /
    • pp.116-130
    • /
    • 2013
  • The prediction of ocean currents in real time over the warning times of a few hours or days is required in planning many operation-related activities in the ocean. Traditionally this is done through numerical models which are targeted toward producing spatially distributed information. This paper discusses a complementary method to do so when site-specific predictions are desired. It is based on the use of a recurrent type of neural network as well as the statistical tool of model tree. The measurements made at a site in Indian Ocean over a period of 4 years were used. The predictions were made over 72 time steps in advance. The models developed were found to be fairly accurate in terms of the selected error statistics. Among the two modeling techniques the model tree performed better showing the necessity of using distributed models for different sub-domains of data rather than a unique one over the entire input domain. Typically such predictions were associated with average errors of less than 2.0 cm/s. Although the prediction accuracy declined over longer intervals, it was still very satisfactory in terms of theselected error criteria. Similarly prediction of extreme values matched with that of the rest of predictions. Unlike past studies both east-west and north-south current components were predicted fairly well.

Rainfall Estimation for Hydrologic Applications (수문학적 응용을 위한 강우량 산정)

  • 배덕효
    • Water for future
    • /
    • v.28 no.1
    • /
    • pp.133-144
    • /
    • 1995
  • The subject of the paper is the selection of the number and location of rainguage stations among existing ones, which will be part of real-time data collection system, for the computation of mean areal precipitation and for use as input of real-time flow forecasting models. The weighted average method developed by National Weather Service was used to compute MAP. Two different searching methods were used to find local optimal solutions as a function of the number of rainguages. An operational rainfall-runoff model was used to determine the optimal location and number of stations for flow prediction.

  • PDF

A study on pseudomeasurement for distribution system state estimation (배전계통 상태추정위한 의사측정치에 관한 연구)

  • Choi, Seung-Kyu;Jeon, Young-Jae;KIm, Hoon;Rim, Tae-Hoon;Kim, Jae-Chul
    • Proceedings of the KIEE Conference
    • /
    • 1999.07c
    • /
    • pp.1076-1078
    • /
    • 1999
  • In this paper, pseudomeasurements have decided using real-time measurements and forecasting data in order to reduce the difference between accuracy of real-time measurements and pseudomeasurements. A decided pseudomeasurement by means of the presented method can look for estimated solution as compared to conventional pseudomeasurement because there is no difference between accuracy of measurements. The simulations are carried out for test systems and corresponding results are presented.

  • PDF

Market Power in the Korea Wholesale Electricity Market (우리나라 전력시장에서의 시장지배력 행사)

  • Kim, Hyun-Shil;Ahn, Nam-Sung
    • Korean System Dynamics Review
    • /
    • v.6 no.1
    • /
    • pp.99-123
    • /
    • 2005
  • Although the generation market is competitive, the power market is easily exercised the market power by one generator due to its special futures such as a limited supplier, large investment cost, transmission constraints and loss. Specially, as Korea Electric industry restructuring is similar US competitive wholesale electricity market structure which discovered the several evidences of market power abuse, when restructuring is completed the possibility that market power will be exercised is big. Market power interferes with market competitions and efficiency of system. The goal of this study is to investigate the market price effects of the potential market power and the proposed market power mitigation strategy in Korean market using the forecasting wholesale electricity market model. This modeling is developed based on the system dynamics approach. it can analyze the dynamic behaviors of wholesale prices in Korean market. And then it is expanded to include the effect of market condition changed by 'strategic behavior' and 'real time pricing.' This model can generate the overall insights regarding the dynamic impact of output withholding by old gas fire power plant bon as a marginal plant in Korean market at the macro level. Also it will give the energy planner the opportunity to create different scenarios for the future for deregulated wholesales market in Korea.

  • PDF

Development of Short-term Heat Demand Forecasting Model using Real-time Demand Information from Calorimeters (실시간 열량계 정보를 활용한 단기 열 수요 예측 모델 개발에 관한 연구)

  • Song, Sang Hwa;Shin, KwangSup;Lee, JaeHun;Jung, YunJae;Lee, JaeSeung;Yoon, SeokMann
    • The Journal of Bigdata
    • /
    • v.5 no.2
    • /
    • pp.17-27
    • /
    • 2020
  • District heating system supplies heat from low-cost high-efficiency heat production facilities to heat demand areas through a heat pipe network. For efficient heat supply system operation, it is important to accurately predict the heat demand within the region and optimize the heat production plan accordingly. In this study, a heat demand forecasting model is proposed considering real-time calorimeter information from local heat demands. Previous models considered ambient temperature and heat demand history data to predict future heat demands. To improve forecast accuracy, the proposed heat demand forecast model added big data from real-time calorimeters installed in the heat demands within the target region. By employing calorimeter information directly in the model, it is expected that the proposed forecast model is to reflect heat use pattern of each demand. Computational experiemtns based on the actual heat demand data shows that the forecast accuracy of the proposed model improved when the calorimeter big data is reflected.

The KMA Global Seasonal Forecasting System (GloSea6) - Part 1: Operational System and Improvements (기상청 기후예측시스템(GloSea6) - Part 1: 운영 체계 및 개선 사항)

  • Kim, Hyeri;Lee, Johan;Hyun, Yu-Kyung;Hwang, Seung-On
    • Atmosphere
    • /
    • v.31 no.3
    • /
    • pp.341-359
    • /
    • 2021
  • This technical note introduces the new Korea Meteorological Administration (KMA) Global Seasonal forecasting system version 6 (GloSea6) to provide a reference for future scientific works on GloSea6. We describe the main areas of progress and improvements to the current GloSea5 in the scientific and technical aspects of all the GloSea6 components - atmosphere, land, ocean, and sea-ice models. Also, the operational architectures of GloSea6 installed on the new KMA supercomputer are presented. It includes (1) pre-processes for atmospheric and ocean initial conditions with the quasi-real-time land surface initialization system, (2) the configurations for model runs to produce sets of forecasts and hindcasts, (3) the ensemble statistical prediction system, and (4) the verification system. The changes of operational frameworks and computing systems are also reported, including Rose/Cylc - a new framework equipped with suite configurations and workflows for operationally managing and running Glosea6. In addition, we conduct the first-ever run with GloSea6 and evaluate the potential of GloSea6 compared to GloSea5 in terms of verification against reanalysis and observations, using a one-month case of June 2020. The GloSea6 yields improvements in model performance for some variables in some regions; for example, the root mean squared error of 500 hPa geopotential height over the tropics is reduced by about 52%. These experimental results show that GloSea6 is a promising system for improved seasonal forecasts.

Comparative Analysis for Real-Estate Price Index Prediction Models using Machine Learning Algorithms: LIME's Interpretability Evaluation (기계학습 알고리즘을 활용한 지역 별 아파트 실거래가격지수 예측모델 비교: LIME 해석력 검증)

  • Jo, Bo-Geun;Park, Kyung-Bae;Ha, Sung-Ho
    • The Journal of Information Systems
    • /
    • v.29 no.3
    • /
    • pp.119-144
    • /
    • 2020
  • Purpose Real estate usually takes charge of the highest proportion of physical properties which individual, organizations, and government hold and instability of real estate market affects the economic condition seriously for each economic subject. Consequently, practices for predicting the real estate market have attention for various reasons, such as financial investment, administrative convenience, and wealth management. Additionally, development of machine learning algorithms and computing hardware enhances the expectation for more precise and useful prediction models in real estate market. Design/methodology/approach In response to the demand, this paper aims to provide a framework for forecasting the real estate market with machine learning algorithms. The framework consists of demonstrating the prediction efficiency of each machine learning algorithm, interpreting the interior feature effects of prediction model with a state-of-art algorithm, LIME(Local Interpretable Model-agnostic Explanation), and comparing the results in different cities. Findings This research could not only enhance the academic base for information system and real estate fields, but also resolve information asymmetry on real estate market among economic subjects. This research revealed that macroeconomic indicators, real estate-related indicators, and Google Trends search indexes can predict real-estate prices quite well.