Browse > Article
http://dx.doi.org/10.14191/Atmos.2021.31.3.341

The KMA Global Seasonal Forecasting System (GloSea6) - Part 1: Operational System and Improvements  

Kim, Hyeri (Operational Systems Development Department, National Institute of Meteorological Sciences)
Lee, Johan (Operational Systems Development Department, National Institute of Meteorological Sciences)
Hyun, Yu-Kyung (Operational Systems Development Department, National Institute of Meteorological Sciences)
Hwang, Seung-On (Operational Systems Development Department, National Institute of Meteorological Sciences)
Publication Information
Atmosphere / v.31, no.3, 2021 , pp. 341-359 More about this Journal
Abstract
This technical note introduces the new Korea Meteorological Administration (KMA) Global Seasonal forecasting system version 6 (GloSea6) to provide a reference for future scientific works on GloSea6. We describe the main areas of progress and improvements to the current GloSea5 in the scientific and technical aspects of all the GloSea6 components - atmosphere, land, ocean, and sea-ice models. Also, the operational architectures of GloSea6 installed on the new KMA supercomputer are presented. It includes (1) pre-processes for atmospheric and ocean initial conditions with the quasi-real-time land surface initialization system, (2) the configurations for model runs to produce sets of forecasts and hindcasts, (3) the ensemble statistical prediction system, and (4) the verification system. The changes of operational frameworks and computing systems are also reported, including Rose/Cylc - a new framework equipped with suite configurations and workflows for operationally managing and running Glosea6. In addition, we conduct the first-ever run with GloSea6 and evaluate the potential of GloSea6 compared to GloSea5 in terms of verification against reanalysis and observations, using a one-month case of June 2020. The GloSea6 yields improvements in model performance for some variables in some regions; for example, the root mean squared error of 500 hPa geopotential height over the tropics is reduced by about 52%. These experimental results show that GloSea6 is a promising system for improved seasonal forecasts.
Keywords
Seasonal forecasting system; GloSea6; new supercomputer; Rose/Cylc;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Lock, A. P., A. R. Brown, M. R. Bush, G. M. Martin, and R. N. B. Smith, 2000: A new boundary layer mixing scheme. Part I: Scheme description and single-column model tests. Mon. Wea. Rev., 128, 3187-3199.   DOI
2 Lott, F., and M. J. Miller, 1997: A new subgrid-scale orographic drag parametrization: Its formulation and testing. Q. J. R. Meteorol. Soc., 123, 101-127.   DOI
3 MacLachlan, C., and Coauthors, 2015: Global Seasonal forecast system version 5 (GloSea5): a high-resolution seasonal forecast system. Q. J. R. Meteorol. Soc., 141, 1072-1084, doi:10.1002/qj.2396.   DOI
4 Hunke, E. C., and W. H. Lipscomb, 2010: CICE: The Los Alamos sea ice model documentation and software user's manual, version 4.1. Los Alamos National Laboratory, LA-CC-06-012, 76 pp.
5 Kim, D.-K., Y.-H. Kim, and C. Yoo, 2019: Predictability of Northern Hemisphere teleconnection patterns in GloSea5 hindcast experiments up to 6 weeks. Atmosphere, 29, 295-309, doi:10.14191/Atmos.2019.29.3.295 (in Korean with English abstract).   DOI
6 Kobayashi, S., and Coauthors, 2015: The JRA-55 reanalysis: General specifications and basic characteristics. J. Meteor. Soc. Japan Ser.II, 93, 5-48, doi:10.2151/jmsj.2015-001.   DOI
7 Dee D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc., 137, 553-597, doi:10.1002/qj.828.   DOI
8 Arakawa, A., 1966: Computational design for long-term numerical integration of the equations of fluid motion: Two-dimensional incompressible flow. Part I. J. Comput. Phys., 1, 119-143.   DOI
9 Adcroft, A., and J.-M. Campin, 2004: Rescaled height coordinates for accurate representation of free-surface flows in ocean circulation models. Ocean Model., 7, 269-284, doi:10.1016/j.ocemod.2003.09.003.   DOI
10 Adler, R. F., and Coauthors, 2018: The Global Precipitation Climatology Project (GPCP) monthly analysis (New version 2.3) and a review of 2017 global precipitation. Atmosphere, 9, 138, doi:10.3390/atmos9040138.   DOI
11 Bigg, G. R., M. R. Wadley, D. P. Stevens, and J. A. Johnson, 1997: Modelling the dynamics and thermodynamics of icebergs. Cold Reg. Sci. Technol., 26, 113-135.   DOI
12 Baran, A. J., P. Hill, D. Walters, S. C. Hardman, K. Furtado, P. R. Field, and J. Manners, 2016: The impact of two coupled cirrus microphysics-radiation parameterizations on the temperature and specific humidity biases in the tropical tropopause layer in a climate model. J. Climate, 29, 5299-5316, doi:10.1175/JCLID-15-0821.1.   DOI
13 Beckmann, A., and R. Doscher, 1997: A method for improved representation of dense water spreading over topography in geopotential-coordinate models. J. Phys. Oceanogr., 27, 581-591.   DOI
14 Bernie, D. J., S. J. Woolnough, J. M. Slingo, and E. Guilyardi, 2005: Modeling diurnal and intraseasonal variability of the ocean mixed layer. J. Climate, 18, 1190-1202.   DOI
15 Bitz, C. M., and W. H. Lipscomb, 1999: An energy-conserving thermodynamic model of sea ice. J. Geophys. Res. Oceans, 104, 15669-15677, doi:10.1029/ 1999JC900100.   DOI
16 Boutle, I. A., and S. J. Abel, P. G. Hill, and C. J. Morcrette, 2014: Spatial variability of liquid cloud and rain: observations and microphysical effects. Q. J. R. Meteorol. Soc., 140, 583-594, doi:10.1002/qj.2140.   DOI
17 Best, M. J., and Coauthors, 2011: The Joint UK Land Environment Simulator (JULES), model description - Part 1: Energy and water fluxes. Geosci. Model Dev., 4, 677-699, doi:10.5194/gmd-4-677-2011.   DOI
18 Mathiot, P., A. Jenkins, C. Harris, and G. Madec, 2017: Explicit representation and parametrised impacts of under ice shelf seas in the z* coordinate ocean model NEMO 3.6. Geosci. Model Dev., 10, 2849-2874, doi:10.5194/gmd-10-2849-2017.   DOI
19 Madec, G., 2008: NEMO ocean engine. Note du Pole de modelisation de l'Institut Pierre-Simon Laplace 27, 300 pp.
20 Marsh, R., and Coauthors, 2015: NEMO-ICB (v1.0): interactive icebergs in the NEMO ocean model globally configured at eddy-permitting resolution. Geosci. Model Dev., 8, 1547-1562, doi:10.5194/gmd-8-1547-2015.   DOI
21 Lock, A. P., 2001: The numerical representation of entrainment in parameterizations of boundary layer turbulent mixing. Mon. Wea. Rev., 129, 1148-1163.   DOI
22 Paolino, D. A., J. L. Kinter III, B. P. Kirtman, D. Min, and D. M. Straus, 2012: The impact of land surface and atmospheric initialization on seasonal forecasts with CCSM. J. Climate, 25, 1007-1021, doi:10.1175/2011JCLI3934.1.   DOI
23 Pearson, K. J., G. M. S. Lister, C. E. Birch, R. P. Allan, R. J. Hogan, and S. J. Woolnough, 2014: Modelling the diurnal cycle of tropical convection across the 'grey zone'. Q. J. R. Meteorol. Soc., 140, 491-499, doi:10.1002/qj.2145.   DOI
24 Mogensen, K. S., M. A. Balmaseda, A. Weaver, M. Martin, and A. Vidard, 2009: NEMOVAR: A variational data assimilation system for the NEMO ocean model. ECMWF Newslett., 120, 17-21.
25 Jin, Z., Y. Qiao, Y. Wang, Y. Fang, and W. Yi, 2011: A new parameterization of spectral and broadband ocean surface albedo. Opt. Express, 19, 26429-26443, doi: 10.1364/OE.19.026429.   DOI
26 Scaife, A. A., N. Butchart, C. D. Warner, and R. Swinbank, 2002: Impact of a spectral gravity wave parameterization on the stratosphere in the Met Office Unified Model. J. Atmos. Sci., 59, 1473-1489.   DOI
27 Ridley, J. K., E. W. Blockley, A. B. Keen, J. G. L. Rae, A. E. West, and D. Schroeder, 2018: The sea ice model component of HadGEM3-GC3.1. Geosci. Model Dev., 11, 713-723, doi:10.5194/gmd-11-713-2018.   DOI
28 Large, W. G., and S. Yeager, 2004: Diurnal to decadal global forcing for ocean and sea-ice models: The data sets and flux climatologies. NCAR Tech. No. NCAR/TN-460+STR, 105 pp.
29 Lee, H., P.-H. Chang, K. Kang, H.-S. Kang, and Y. Kim, 2018: Assessment of ocean surface current forecasts from high resolution Global Seasonal Forecast System version 5. Ocean Polar Res., 40, 99-114, doi: 10.4217/OPR.2018.40.3.099 (in Korean with English abstract).   DOI
30 Lee, S.-J., Y.-K. Hyun, S.-M. Lee, S.-O. Hwang, J. Lee, and K.-O. Boo, 2020: Prediction skill for East Asian summer monsoon indices in a KMA Global Seasonal Forecasting System (GloSea5). Atmosphere, 30, 293-309, doi:10.14191/Atmos.2020.30.3.293 (in Korean with English abstract).   DOI
31 Sanchez, C., K. D. Williams, and M. Collins, 2016: Improved stochastic physics schemes for global weather and climate models. Q. J. R. Meteorol. Soc., 142, 147-159, doi:10.1002/qj.2640.   DOI
32 Rodgers, K. B., and Coauthors, 2014: Strong sensitivity of Southern Ocean carbon uptake and nutrient cycling to wind stirring. Biogeosciences, 11, 4077-4098, doi: 10.5194/bg-11-4077-2014.   DOI
33 Rothman, L. S., and Coauthors, 2013: The HITRAN2012 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transfer, 130, 4-50, doi:10.1016/j.jqsrt.2013.07.002.   DOI
34 Roullet, G., and G. Madec, 2000: Salt conservation, free surface, and varying levels: A new formulation for ocean general circulation models. J. Geophys. Res. Oceans, 105, 23927-23942, doi:10.1029/2000JC900089.   DOI
35 Smith, R. N. B., 1990: A scheme for predicting layer clouds and their water content in a general circulation model. Q. J. R. Meteorol. Soc., 116, 435-460.   DOI
36 Storkey, D., and Coauthors, 2018: UK Global Ocean GO6 and GO7: a traceable hierarchy of model resolutions. Geosci. Model Dev., 11, 3187-3213, doi:10.5194/gmd-11-3187-2018.   DOI
37 Valcke, S., 2013: The OASIS3 coupler: a European climate modelling community software. Geosci. Model Dev., 6, 373-388, doi:10.5194/gmd-6-373-2013.   DOI
38 Xie, P., and P. A. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78, 2539-2558.   DOI
39 Zerroukat, M., and T. Allen, 2015: On the monotonic and conservative transport on overset/Yin-Yang grids. J. Comput. Phys., 302, 285-299, doi:10.1016/j.jcp.2015.09.006.   DOI
40 UK Met Office, 2005: OSTIA L4 SST Analysis. Ver. 1.0. PO.DAAC, CA, USA. Dataset accessed [2020-06-01] [Available online at https://doi.org/10.5067/GHOST4FK01].
41 Simmons, H. L., S. R. Jayne, L. C. S., Laurent, and A. J. Weaver, 2004: Tidally driven mixing in a numerical model of the ocean general circulation. Ocean Modelling, 6, 245-263.   DOI
42 Wilson, D. R., A. C. Bushell, A. M. Kerr-Munslow, J. D. Price, and C. J. Morcrette, 2008a: PC2: A prognostic cloud fraction and condensation scheme. I: Scheme description. Q. J. R. Meteorol. Soc., 134, 2093-2107, doi: 10.1002/qj.333.   DOI
43 Edson, J. B., 2009: Review of air-sea transfer processes. Conf. Paper, ECMWF workshop on atmosphere-ocean interactions 2008, European Centre for Medium-Range Weather Forecasts, 7-24.
44 Walters, D. N., and Coauthors, 2011: The Met Office Unified Model global atmosphere 3.0/3.1 and JULES global land 3.0/3.1 configurations. Geosci. Model Dev., 4, 919-941, doi:10.5194/gmd-4-919-2011.   DOI
45 Walters, D. N., and Coauthors, 2019: The Met Office Unified Model Global Atmosphere 7.0/7.1 and JULES Global Land 7.0 configurations. Geosci. Model Dev., 12, 1909-1963.   DOI
46 Warner, C. D., and M. E. McIntyre, 2001: An ultrasimple spectral parameterization for nonorographic gravity waves. J. Atmos. Sci., 58, 1837-1857.   DOI
47 Williams, K. D., and Coauthors, 2015: The met office global coupled model 2.0 (GC2) configuration. Geosci. Model Dev., 8, 1509-1524, doi:10.5194/gmd-8-1509-2015.   DOI
48 Williams, K. D., and Coauthors, 2017: The Met Office Global Coupled Model 3.0 and 3.1 (GC3.0 and GC3.1) configurations. J. Adv. Model. Earth Sys., 10, 357-380, doi:10.1002/2017MS001115.   DOI
49 Wilson, D. R., and S. P. Ballard, 1999: A microphysically based precipitation scheme for the UK Meteorological Office Unified Model. Q. J. R. Meteorol. Soc., 125, 1607-1636.   DOI
50 Wilson, D. R., A. C. Bushell, A. M. Kerr-Munslow, J. D. Price, and C. J. Morcrette, and A. BodasSalcedo, 2008b: PC2: A prognostic cloud fraction and condensation scheme. II: Climate model simulations. Q. J. R. Meteorol. Soc., 134, 2109-2125, doi:10.1002/qj.332.   DOI
51 Wood, N., and Coauthors, 2014: An inherently mass-conserving semi-implicit semi-Lagrangian discretization of the deep-atmosphere global non-hydrostatic equations. Q. J. R. Meteorol. Soc., 140, 1505-1520.   DOI
52 Prodhomme, C., F. Doblas-Reyes, O. Bellprat, and E. Dutra, 2016: Impact of land-surface initialization on sub-seasonal to seasonal forecasts over Europe. Climate Dyn., 47, 919-935, doi:10.1007/s00382-015-2879-4.   DOI
53 Bowler, N. E., A. Arribas, S. E. Beare, K. R. Mylne, and G. J. Shutts, 2009: The local ETKF and SKEB: upgrades to the MOGREPS short-range ensemble prediction system. Q. J. R. Meteorol. Soc., 135, 767-776.   DOI
54 Lim, S.-M., Y.-K. Hyun, H.-S. Kang, and S.-W. Yeh, 2018: Prediction skill of East Asian precipitation and temperature associated with El Nino in GloSea5 hindcast data. Atmosphere, 28, 37-51, doi:10.14191/Atmos.2018.28.1.037 (in Korean with English abstract).   DOI
55 Blockley, E. W., and Coauthors, 2014: Recent development of the Met Office operational ocean forecasting system: an overview and assessment of the new Global FOAM forecasts. Geosci. Model Dev., 7, 2613-2638, doi:10.5194/gmd-7-2613-2014.   DOI
56 Boutle, I. A., and S. J. Abel, 2012: Microphysical controls on the stratocumulus topped boundary-layer structure during VOCALS-Rex. Atmos. Chem. Phys., 12, 2849-2863, doi:10.5194/acp-12-2849-2012.   DOI
57 Brown, A., S. Milton, M. Cullen, B. Golding, J. Mitchell, and A. Shelly, 2012: Unified modeling and prediction of weather and climate: A 25-year journey. Bull. Amer. Meteor. Soc., 93, 1865-1877, doi:10.1175/BAMS-D-12-00018.1.   DOI
58 Derbyshire, S. H., A. V. Maidens, S. F. Milton, R. A. Stratton, and M. R. Willett, 2011: Adaptive detrainment in a convective parametrization. Q. J. R. Meteorol. Soc., 137, 1856-1871, doi:10.1002/qj.875.   DOI
59 Flocco, D., D. L. Feltham, and A. K. Turner, 2010: Incorporation of a physically based melt pond scheme into the sea ice component of a climate model. J. Geophys. Res. Oceans, 115, C08012, doi:10.1029/2009JC005568.   DOI
60 Tennant, W. J., G. J. Shutts, A. Arribas, and S. A. Thompson, 2011: Using a stochastic kinetic energy backscatter scheme to improve MOGREPS probabilistic forecast skill. Mon. Wea. Rev., 139, 1190-1206, doi:10.1175/2010MWR3430.1.   DOI
61 Gaspar, P., Y. Gregoris, and J. M. Lefevre, 1990: A simple eddy kinetic energy model for simulations of the oceanic vertical mixing: Tests at station Papa and longterm upper ocean study site. J. Geophys. Res. Oceans, 95, 16179-16193.   DOI
62 Gregory, D., and P. R. Rowntree, 1990: A mass flux convection scheme with representation of cloud ensemble characteristics and stability-dependent closure. Mon. Wea. Rev., 118, 1483-1506.   DOI
63 Hill, P. G., J. Manners, and J. C. Petch, 2011: Reducing noise associated with the Monte Carlo Independent Column Approximation for weather forecasting models. Q. J. R. Meteorol. Soc., 137, 219-228, doi:10.1002/qj.732.   DOI
64 Khairoutdinov, M., and Y. Kogan, 2000: A new cloud physics parameterization in a large-eddy simulation model of marine stratocumulus. Mon. Wea. Rev., 128, 229-243.   DOI
65 Edwards, J. M., and A. Slingo, 1996: Studies with a flexible new radiation code. I: Choosing a configuration for a largescale model. Q. J. R. Meteorol. Soc., 122, 689-719.   DOI
66 Field, P. R., A. A. Hill, K. Furtado, and A. Korolev, 2014: Mixed-phase clouds in a turbulent environment. Part 2: Analytic treatment. Q. J. R. Meteorol. Soc., 140, 870-880, doi:10.1002/qj.2175.   DOI
67 Grant, A. L. M., 2001: Cloud-base fluxes in the cumuluscapped boundary layer. Q. J. R. Meteorol. Soc., 127, 407-421.   DOI
68 Hersbach, H., and D. Dee, 2016: ERA5 reanalysis is in production. ECMWF Newslett., 147, 7.
69 Hill, P. G., C. J. Morcrette, and I. A. Boutle, 2015: A regimedependent parametrization of subgrid-scale cloud water content variability. Q. J. R. Meteorol. Soc., 141, 1975-1986, doi:10.1002/qj.2506.   DOI
70 Hirsch, A. L., J. Kala, A. J. Pitman, C. Carouge, J. P. Evans, V. Haverd, and D. Mocko, 2014: Impact of land surface initialization approach on subseasonal forecast skill: A regional analysis in the Southern Hemisphere. J. Hydrometeor., 15, 300-319, doi:10.1175/JHM-D13-05.1.   DOI
71 Gregory, D., and S. Allen, 1991: The effect of convective scale downdraughts upon NWP and climate simulations. 9th conference on numerical weather prediction, Denver, Colorado, Amer. Meteor. Soc., 122-123.
72 Larson, J., R. Jacob, and E. Ong, 2005: The Model Coupling Toolkit: A new fortran90 toolkit for building multiphysics parallel coupled models. Int. J. High Perf. Comp. App., 19, 277-292.   DOI
73 Hollingsworth, A., P. Kallberg, V. Renner, and D. M. Burridge, 1983: An internal symmetric computational instability. Q. J. R. Meteorol. Soc., 109, 417-428, doi:10.1002/qj.49710946012.   DOI