Kim, Jae-Sung;Yang, Yeo-Jin;Oh, Min-Ji;Lee, Sung-Woong;Kwon, Sun-dong;Cho, Wan-Sup
The Journal of Bigdata
/
v.5
no.2
/
pp.111-120
/
2020
Despite the recent economic contraction caused by the Corona 19 incident, interest in the residential environment is growing as more people live at home due to the increase in telecommuting, thereby increasing demand for remodeling. In addition, the government's real estate policy is also expected to have a visible impact on the sales of the interior and furniture industries as it shifts from regulatory policy to the expansion of housing supply. Accurate demand forecasting is a problem directly related to inventory management, and a good demand forecast can reduce logistics and inventory costs due to overproduction by eliminating the need to have unnecessary inventory. However, it is a difficult problem to predict accurate demand because external factors such as constantly changing economic trends, market trends, and social issues must be taken into account. In this study, LSTM model and 1D-CNN model were compared and analyzed by artificial intelligence-based time series analysis method to produce reliable results for manufacturers producing furniture components.
The purpose of this study is to improve the daily prediction results of PM2.5 from the air quality diagnosis and evaluation system operated by the Busan Institute of Health and Environment in real time. The air quality diagnosis and evaluation system is based on the photochemical numerical model, CMAQ (Community multiscale air quality modeling system), and includes a 3-day forecast at the end of the model's calculation. The photochemical numerical model basically has limitations because of the uncertainty of input data and simplification of physical and chemical processes. To overcome these limitations, this study applied DNN (Deep Neural Network), a deep learning technique, to the results of the numerical model. As a result of applying DNN, the r of the model was significantly improved. The r value for GFS (Global forecast system) and UM (Unified model) increased from 0.77 to 0.87 and 0.70 to 0.83, respectively. The RMSE (Root mean square error), which indicates the model's error rate, was also significantly improved (GFS: 5.01 to 6.52 ug/m3 , UM: 5.76 to 7.44 ug/m3 ). The prediction results for each concentration grade performed in the field also improved significantly (GFS: 74.4 to 80.1%, UM: 70.0 to 77.9%). In particular, it was confirmed that the improvement effect at the high concentration grade was excellent.
The Korea Air Force(KAF) has operated freight flights based on the prefixed time and route schedule, which is adjusted once in a month. The major purpose of the operation of freight flights in the KAF is to distribute necessary supplies from the home air base to other air bases. The secondary purpose is to train the young pilots to get more experiences in navigation. Each freight flight starts from and returned to the home air base everyday except holidays, while it visits several other air bases to accomplish its missions. The study aims to forecast freight demand at each base by using time series analysis, and then it tried to optimize the cost of operating flights by solving vehicle routing problem. For more specifically, first, several constraints in operating cargos were defined by reviewing the Korea Air Force manuals and regulation. With such constraints, an integer programming problem was formulated for this specific routing problem allowing several visits in a tour with limitation of maximum number of visits. Then, an algorithm to solve the routing problem was developed. Second, the time series analysis method was applied to find out the freight demand at each air base from the mother air base in the next month. With the forecasted demands and the developed solution algorithm, the oprimum routes are calculated for each flight. Finally, the study compared the solved routing system by the developed algorithm with the existing routing system of the Korea Air Force. Through this comparison, the study proved that the proposed method can provide more (economically) efficient routing system than the existing system in terms of computing and monetary cost. In summary, the study suggested objective criteria for air routing plan in the KAF. It also developed the methods which could forecast properly the freight demands at each bases by using time series analysis and which could find the optimum routing which minimizes number of cargo needed. Finally, the study showed the economical savings with the optimized routing system by using real case example.
The objective of this study is to develop the data driven model for the flood forecasting that are improved the problems of the existing hydrological model for flood forecasting in medium and small streams. Neuro-Fuzzy flood forecasting model which linked the Takagi-Sugeno fuzzy inference theory with neural network, that can forecast flood only by using the rainfall and flood level and discharge data without using lots of physical data that are necessary in existing hydrological rainfall-runoff model is established. The accuracy of flood forecasting using this model is determined by temporal distribution and number of used rainfall and water level as input data. So first of all, the various combinations of input data were constructed by using rainfall and water level to select optimal input data combination for applying Neuro-Fuzzy flood forecasting model. The forecasting results of each combination are compared and optimal input data combination for real-time flood forecasting is determined.
Journal of the Korean Association of Geographic Information Studies
/
v.9
no.3
/
pp.171-182
/
2006
In this study, rainfall-runoff analysis was performed for Yongdam watershed($930km^2$) using KOWACO flood analysis model based on Storage Function Method as lumped hydrologic model and Vflo which was developed for real-time flood prediction by University of Oklahoma. The results shows that, the hydrographs of lumped and distributed model with uncalibrated parameters which estimated from physical or experimental relationship show significant biases from observed hydrographs. However, the hydrograph at Cheoncheon site from the distributed model follows the actual hydrograph to an extent that no more calibration is necessary. It encourages that distributed model can have advantages for application in real-time flood forecasting as physically based distributed hydrologic model which can construct event-independent basin parameter group.
A regression water level forecasting model using data from stage and rainfall monitoring stations is developed to solve the difficulties which real-time forecasting models could not get the reliabilities by assuming future rainfall duration and intensity. The model could forecast future water levels of maximum 2 hours after using data from monitoring stations in Daejeon area. It shows stable forecasts by its maximum standard deviation is 5 cm, average standard deviations are 1~4 cm and most of coefficients of determination are larger than 0.95. It shows also more researches about the stationary of watershed which assumed in this regression method are necessary.
Korean Journal of Agricultural and Forest Meteorology
/
v.3
no.3
/
pp.156-162
/
2001
In order to monitor local climatic information, twelve automated weather stations (AWS) were installed in alpine area by the Alpine Agricultural Experiment Station, Rural Development Administration (RDA), at the field of major crop located in around highland area, and collected data from 1993 to 2000. Hourly measurements of air and soil temperature (underground 10 cm,20 cm), relative humidity, wind speed and direction, precipitation, solar radiation and leaf wetness were automatically performed and the data could be collected through a public phone line. Datalogger was selected as CR10X (Campbell scientific, LTD, USA) out of consideration for sensers' compatibility, economics, endurance and conveniences. All AWS in alpine area were combined for net work and daily climatic data were analyzed in text and graphic file by program (Chumsungdae, LTD) on 1 km $\times$ 1 km grid tell basis. In this analysis system, important multi-functionalities, monitoring and analysis of local climatic information in alpine area was emphasized. The first objective was to obtain the output of a real time data from AWS. Secondly, daily climatic normals for each grid tell were calculated from geo-statistical relationships based on the climatic records of existing weather stations as well as their topographical informations. On 1 km $\times$ 1 km grid cell basis, real time climatic data from the automated weather stations and daily climatic normals were analyzed and graphed. In the future, if several simulation models were developed and connected with this system it would be possible to precisely forecast crop growth and yield or plant disease and pest by using climatic information in alpine area.
Coppola, Emery A. Jr.;Jacinto, Adorable B.;Atherholt, Tom;Poulton, Mary;Pasquarello, Linda;Szidarvoszky, Ferenc;Lohbauer, Scott
Korean Journal of Ecology and Environment
/
v.46
no.1
/
pp.1-9
/
2013
Algal blooms in potable water supplies are becoming an increasingly prevalent and serious water quality problem around the world. In addition to precipitating taste and odor problems, blooms damage the environment, and some classes like cyanobacteria (blue-green algae) release toxins that can threaten human health, even causing death. There is a recognized need in the water industry for models that can accurately forecast in real-time algal bloom events for planning and mitigation purposes. In this study, using data for an interconnected system of rivers and reservoirs operated by a New Jersey water utility, various ANN models, including both discrete prediction and classification models, were developed and tested for forecasting counts of three different algal classes for one-week and two-weeks ahead periods. Predictor model inputs included physical, meteorological, chemical, and biological variables, and two different temporal schemes for processing inputs relative to the prediction event were used. Despite relatively limited historical data, the discrete prediction ANN models generally performed well during validation, achieving relatively high correlation coefficients, and often predicting the formation and dissipation of high algae count periods. The ANN classification models also performed well, with average classification percentages averaging 94 percent accuracy. Despite relatively limited data events, this study demonstrates that with adequate data collection, both in terms of the number of historical events and availability of important predictor variables, ANNs can provide accurate real-time forecasts of algal population counts, as well as foster increased understanding of important cause and effect relationships, which can be used to both improve monitoring programs and forecasting efforts.
Kim, Jin-Young;Cho, Jang-Ho;Jeon, Il-Tae;Jung, Dal-Do;Kang, Joon-Hee
Journal of Korean Society for Geospatial Information Science
/
v.18
no.2
/
pp.21-28
/
2010
Air pollution monitoring has attracted a lot of interests because it affects directly to the human life quality. The most of the current air pollution monitoring stations use the expensive and bulky instruments and are only installed in the specific area. Therefore, it is difficult to install them to as many places as people need. In this work, we constructed a low price and small size Radio Frequency(RF) sensor system to solve this problem. This system also had the measurement range similar to the ones used in the air pollution forecast systems. This system had the sensor unit to measure the air quality, the central processing unit for air quality data acquisition, the power unit to supply the power to every units, and the RF unit for the wireless transmission and reception of the data. This system was easy to install in the field. We also added a GPS unit to track the position of the RF-sensor in real time by wireless communication. For the various measurements of the air pollution, we used CO, $O_3$, $NO_2$ sensors as gas sensors and also installed a dust sensor.
The city gas demand data has strong seasonality. Thus, the seasonality factor is the majority for the development of forecasting model for city gas supply amounts. Also, real city gas demand amounts can be affected by other factors; weekday effect, holiday effect, the number of validity day, and the number of consumptions. We examined the degree of effective power of these factors for the city gas demand and proposed a time-series model for efficient forecasting of city gas supply. We utilize the liner regression model with autoregressive regression errors and we have excellent forecasting results using real data.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.