DOI QR코드

DOI QR Code

Demand Prediction of Furniture Component Order Using Deep Learning Techniques

딥러닝 기법을 활용한 가구 부자재 주문 수요예측

  • 김재성 (충북대학교 대학원 빅데이터학과) ;
  • 양여진 (충북대학교 대학원 빅데이터학과) ;
  • 오민지 (충북대학교 대학원 빅데이터학과) ;
  • 이성웅 (새한) ;
  • 권순동 (충북대학교 경영정보학과) ;
  • 조완섭 (충북대학교 경영정보학과)
  • Received : 2020.11.30
  • Accepted : 2020.12.21
  • Published : 2020.12.31

Abstract

Despite the recent economic contraction caused by the Corona 19 incident, interest in the residential environment is growing as more people live at home due to the increase in telecommuting, thereby increasing demand for remodeling. In addition, the government's real estate policy is also expected to have a visible impact on the sales of the interior and furniture industries as it shifts from regulatory policy to the expansion of housing supply. Accurate demand forecasting is a problem directly related to inventory management, and a good demand forecast can reduce logistics and inventory costs due to overproduction by eliminating the need to have unnecessary inventory. However, it is a difficult problem to predict accurate demand because external factors such as constantly changing economic trends, market trends, and social issues must be taken into account. In this study, LSTM model and 1D-CNN model were compared and analyzed by artificial intelligence-based time series analysis method to produce reliable results for manufacturers producing furniture components.

최근 코로나 19 사태로 인한 경기 위축에도 불구하고, 재택근무 증가로 집에 거주하는 시간이 늘어나면서 주거환경에 관한 관심이 커지고 있으며, 이에 따라 리모델링에 대한 수요가 증가하고 있다. 또한, 정부의 부동산 정책 또한 규제 정책에서 주택공급 확대 방향으로 전환하면서 이에 따른 인테리어, 가구업계의 매출에도 가시적인 영향이 있을 것으로 예상한다. 정확한 수요예측은 재고 관리와 직결되는 문제로 정확한 수요예측은 불필요한 재고를 보유할 필요가 없어 과잉생산으로 인한 물류, 재고 비용을 줄여줄 수 있다. 하지만 정확한 수요를 예측하기 위해서는 지속적으로 변화하는 경제동향, 시장동향, 사회적 이슈등 외부요인을 모두 고려하여 분석해야 하기 때문에 어려운 문제이다. 본연구에서는 가구 부자재를 생산하고 있는 제조업체에 대하여 신뢰성 있는 결과 도출을 위해 인공지능기반 시계열 분석 방법으로, LSTM 모형, 1D-CNN 모형을 비교 분석하였다.

Keywords

Acknowledgement

본 과제(결과물)는 교육부와 한국연구재단의 재원으로 지원을 받아 수행된 사회맞춤형 산학협력 선도대학(LINC+) 육성사업의 연구결과입니다. (1345323364)

References

  1. http://www.molit.go.kr/USR/NEWS/m_71/dtl.jsp?lcmspage=1&id=95084312
  2. 노우리. "전.가구 수요 증가 홈코노미주, 목표주가도 쑥쑥" 이투데이, 2020.07.10. https://www.today. o.kr/news/view/1916449
  3. 반상규. "모델링 시장규모 2030년 46조원으로 2.5배 급성장 전망" 대한전문건설신문, 2019.04.02. http://www.koscaj.com/news/articleView.tml?idxno=111927
  4. 김정아, 정종필, 이태현, 배상민. (2018). 중소기업 제조공장의 수요예측 기반 재고관리 모델의 효용성 평가, 18(2), 197-207. https://doi.org/10.7236/JIIBC.2018.18.2.197
  5. D. Jeong, M. Baek and S. Lee, "Long-term prediction of vehicle trajectory based on a deep neural network," in Proc. of the 2017 International Conference on Information and Communication Technology Convergence (ICTC), Jeju, South Korea, pp. 725-727, 2017. DOI: 10.1109/ICTC.017.8190764
  6. A. Tokgoz and G. Unal, "A RNN based time series approch for forecasting turkish electricity load," in Proc. of the 2018 26th Signal Processing and Communications Applications Conference (SIU), Izmir, Turkey, 2018. DOI: 10.1109/SIU.018.8404313
  7. 김진섭, 황재성, 정재우. (2020). 시계열 분해 데이터를 이용한 LSTM 기법 기반 항공기 수리부속 수요예측 방안 연구. 경영과학, 37(2), 1-18.
  8. 조영기, 이현수. (2020). 변형된 Attention 메커니즘 기반의 LSTM을 통한 전력수요 예측 프레임웍. 한국지능시스템학회 논문지, 30(3), 242-250.
  9. 이정현, 김재성, 안영호, 조완섭. (2019). V2G 환경의 전력 수급 의사결정 지원을 위한 SARIMA기법과 LSTM기법의 전력사용량 1일 예측 연구. 한국데이터정보과학회지, 30(4), 779-795.
  10. 이우주, 장효진, 이서희, 최승회. (2020). 승률에 대한 Arima와 Grey 그리고 LSTM 모형 비교. 한국지능시스템학회 논문지, 30(4), 303-308.
  11. 김예인, 이세은, 권용성. (2020). CNN-LSTM 딥러닝 기반 캠퍼스 전력 예측 모델 최적화단계 제시. 한국산학기술학회 논문지, 21(10), 8-15.
  12. Y. H. Chen, T. Krishna, J. S. Emer and V. Sze, "Eyeriss: An energy-efficient reconfigurable accelerator for deep convolutional neural networks," IEEE Journal of Solid-State Circuits, vol. 52, no. 1, pp. 127-138, 2017. https://doi.org/10.1109/JSSC.2016.2616357
  13. T. D. Do, M. T. Duong, Q. V Dang and M. H. Le, "Real-time self-driving car navigation using deep neural network," in Proc. of the 2018 4th International Conference on Green Technology and Sustainable Development (GTSD), pp. 7-12, 2018. DOI: 10.1109/GTSD.018.8595590
  14. Bengio, Y., P. Simard, and P. Frasconi, "Learning long-term dependencies with gradient descent is difficult," IEEE Transactions on Neural Networks, Vol.5, No.2(1994), 157-66. https://doi.org/10.1109/72.279181
  15. Arel, I., Rose, D. C., and Karnowski, T. P., "Deep Machine Learning-A New Frontier in Artificial Intelligence Research", IEEE Computational Intelligence Magazine, pp.13-18, Nov. 2010.
  16. 김현일, 한건연, 이재영. (2020). LSTM 모형과 로지스틱 회귀를 통한 도시 침수 범위의 예측. 대한토목학회논문집, 40(3), 273-283. https://doi.org/10.12652/KSCE.2020.40.3.0273
  17. 정호철, 선영규, 이동구, 김수현, 황유민, 심이삭, 오상근, 송승호, 김진영. (2019). 에너지인터넷에서 1D-CNN과 양방향 LSTM을 이용한 에너지 수요예측. 전기전자학회논문지, 23(1), 134-142. https://doi.org/10.7471/ikeee.2019.23.1.134
  18. Chen, Q., Xie, Q., Yuan, Q., Huang, H., & Li, Y. (2019). Research on a Real-Time Monitoring Method for the Wear State of a Tool Based on a Convolutional Bidirectional LSTM Model. Symmetry, 11(10), 1233. https://doi.org/10.3390/sym11101233