• Title/Summary/Keyword: Real time fluorescence measurement

Search Result 21, Processing Time 0.025 seconds

Accuracy Evaluation and Alert Level Setting for Real-time Cyanobacteria Measurement Using Receiver Operating Characteristic Curve Analysis (ROC 분석을 이용한 수질자동측정소 실시간 남조류 측정의 정확성 평가 및 경보기준 설정)

  • Song, Sanghwan;Park, Jong-hwan;Kang, Tae-Woo;Kim, Young-Suk;Kim, Jihyun;Kang, Taegu
    • Journal of Korean Society on Water Environment
    • /
    • v.33 no.2
    • /
    • pp.130-139
    • /
    • 2017
  • With the need to evaluate accuracy of real-time measurement of cyanobacterial fluorescence to determine cyanobacterial blooms, this research examined 357 paired data (2013-2016) comprising both microscopic toxic cyanobacterial cell counts and concurrent real-time cyanobacterial concentrations at 2 sites (YS1 and YS2) in Yeongsan river. The increase in real-time cyanobacterial concentration was closely associated with the exceedance of 5,000 cyanobacterial cells/ml (odds ratio [OR] 1.07, 95% confidence interval [CI] 1.03-1.12) and 10,000 cells/ml (OR 1.08, 95% CI 1.04-1.12) at YS2 site. The area under the receiver operating characteristic (ROC) curve for the real-time cyanobacterial measurement at the YS2 site was 0.93, which indicates the measurement provides a high accurate detection of cyanobacterial blooms. On the ROC curve, the early alert levels of real-time cyanobacteria ranging $16-23{\mu}g$ chl-a/L would produce acceptable sensitivity of 79% and specificities greater than 90%. The real-time fluorescence measurement was found to be an accurate indicator of cyanobacteria and can serve as a tool for detecting toxic cyanobacterial bloom events in Youngsan river.

Development of a Fluorescence Measurement System Capable of Rapid Red Tide Monitoring (신속한 적조 예찰이 가능한 형광 측정시스템 개발)

  • Kyung-hoon Baek;Yeongji Oh;Hyeonseo Cho;Yoonja Kang;Joon-seok Lee
    • Journal of Sensor Science and Technology
    • /
    • v.33 no.1
    • /
    • pp.30-33
    • /
    • 2024
  • The occurrence of harmful algae on the coast of Korea has been a cause of damage to the aquaculture industry and deterioration of the coastal ecosystem environment. A method is required to predict their outbreak in real-time at the site. Therefore, this study attempted to develop a small hybrid optical sensor and real-time monitoring system based on LiDAR that can be used in the field and laboratory and can be applied to various platforms. FMS-L specifically suggested the amount of Chlorophyll a (Chl a) in the sample by measuring and analyzing the fluorescence emitted by the irradiating light. The accuracy of FMS-L was verified by measuring the concentrations of standard Chlorophyll a substances and Margalfidinium polykirkoids. In addition, the precision was verified by comparing the measurement results of FMS-L using commercial equipment Phyto-PAM-II. This equipment is compact and easy to move. Therefore, it can be easily applied to field surveys, allows short time measurements (10 s), and can be applied at a distance of 10 m from the measurement site.

Real-time Fluorescence Lifetime Imaging Microscopy Implementation by Analog Mean-Delay Method through Parallel Data Processing

  • Kim, Jayul;Ryu, Jiheun;Gweon, Daegab
    • Applied Microscopy
    • /
    • v.46 no.1
    • /
    • pp.6-13
    • /
    • 2016
  • Fluorescence lifetime imaging microscopy (FLIM) has been considered an effective technique to investigate chemical properties of the specimens, especially of biological samples. Despite of this advantageous trait, researchers in this field have had difficulties applying FLIM to their systems because acquiring an image using FLIM consumes too much time. Although analog mean-delay (AMD) method was introduced to enhance the imaging speed of commonly used FLIM based on time-correlated single photon counting (TCSPC), a real-time image reconstruction using AMD method has not been implemented due to its data processing obstacles. In this paper, we introduce a real-time image restoration of AMD-FLIM through fast parallel data processing by using Threading Building Blocks (TBB; Intel) and octa-core processor (i7-5960x; Intel). Frame rate of 3.8 frames per second was achieved in $1,024{\times}1,024$ resolution with over 4 million lifetime determinations per second and measurement error within 10%. This image acquisition speed is 184 times faster than that of single-channel TCSPC and 9.2 times faster than that of 8-channel TCSPC (state-of-art photon counting rate of 80 million counts per second) with the same lifetime accuracy of 10% and the same pixel resolution.

Calibration-free real-time organic film thickness monitoring technique by reflected X-Ray fluorescence and compton scattering measurement

  • Park, Junghwan;Choi, Yong Suk;Kim, Junhyuck;Lee, Jeongmook;Kim, Tae Jun;Youn, Young-Sang;Lim, Sang Ho;Kim, Jong-Yun
    • Nuclear Engineering and Technology
    • /
    • v.53 no.4
    • /
    • pp.1297-1303
    • /
    • 2021
  • Most thickness measurement techniques using X-ray radiation are unsuitable in field processes involving fast-moving organic films. Herein, we propose a Compton scattering X-ray radiation method, which probes the light elements in organic materials, and a new simple, non-destructive, and non-contact calibration-free real-time film thickness measurement technique by setting up a bench-top X-ray thickness measurement system simulating a field process dealing with thin flexible organic films. The use of X-ray fluorescence and Compton scattering X-ray radiation reflectance signals from films in close contact with a roller produced accurate thickness measurements. In a high-thickness range, the contribution of X-ray fluorescence is negligible, whereas that of Compton scattering is negligible in a low-thickness range. X-ray fluorescence and Compton scattering show good correlations with the organic film thickness (R2 = 0.997 and 0.999 for X-ray fluorescence and Compton scattering, respectively, in the thickness range 0-0.5 mm). Although the sensitivity of X-ray fluorescence is approximately 4.6 times higher than that of Compton scattering, Compton scattering signals are useful for thick films (e.g., thicker than ca. 1-5 mm under our present experiment conditions). Thus, successful calibration-free thickness monitoring is possible for fast-moving films, as demonstrated in our experiments.

Development of a real-time Analysis System of Microchip Fluorescence Images based on Server-Client (서버 클라이언트 기반의 실시간 마이크로칩 형광 이미지 분석 시스템 개발)

  • Cho, Migyung;Shim, Jaesool
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.5
    • /
    • pp.1239-1244
    • /
    • 2013
  • In the field of clinical medicine and research, the analysis of such as protein and DNA at the molecular level and even at the cell level are necessary for disease diagnosis and treatment. In many cases, a real time image of samples is needed for the accurate analysis and manipulation of samples since experimental samples are degenerated with time. In this research, a three-dimensional fluorescence microscope device was developed for taking images of protein and DNA inside a single cell and the server-client based image analysis system was made for an integrated management of the real-time images taken from the microscope device. The system consists of a fluorescent measurement device, the associated software and a client program on smartphone. The developed system allows doctors or experimental managers to receive and look at the real-time experimental images taken from the samples of patients anywhere in the emergency, to analyze results and to instantly diagnose the disease and to transfer the results to the patients. As a result, the system is able to be utilized in the implementation of ubiquitous health as well.

Real Time Measurement of Protease Activity of Live Uronema marinum (Ciliata: Scuticociliatida) by Fluorescence Polarization Assay

  • Lee Eun Hye;Kwon Se Ryun;Kim Chun Soo;Chung Joon Ki;Lee Hyung Ho;Kim Ki Hong
    • Fisheries and Aquatic Sciences
    • /
    • v.5 no.4
    • /
    • pp.311-313
    • /
    • 2002
  • Proteolytic activity of live Uronema manum was analyzed by fluorescence polarization (FP) technique. Protease activity was measured by a decrease in FP value using fluorescein isothiocynate (FITC)-casein as a protein substrate. The results demonstrated an inverse linear relationship between fluorescence polarization (FP) values and live ciliate concentration over the range $1\times10^4\;to\;2\times10^5$ cells/well. However, the FP values of $10-10^3$ live parasites were not different significantly from that of control. Time-dependent decrease in FP value was shown in the wells containing live U. marinum. In the present study, FP assay had the benefit to provide measurements of substrate hydrolysis by live parasites in real-time, and did not require separations, precipitations, or transfers of reaction mixture.

Transverse Profile Measurement of Proton Beam using the Beam Induced Fluorescence Monitor in KIRAMS-13 Cyclotron (Beam Induced Fluorescence 모니터를 이용한 KIRAMS-13 싸이클로트론의 양성자빔 횡단면 측정)

  • Nam, S.K.;Kim, K.B.
    • Journal of the Korean Vacuum Society
    • /
    • v.18 no.6
    • /
    • pp.418-425
    • /
    • 2009
  • To get the stable and optimized proton beam in the KIRAMS-13 cyclotron which installed in the regional cyclotron center, it is necessary to measure the transverse profile of proton beam. Beam Induced Fluorescence monitor is one of the non-destructive methods to measure the beam profiles, and it has many advantages such as a simple structure, real-time measurement, and minimum energy loss. The objective of this research is the design and development of Beam Induced Fluorescence monitor to measure the proton beam profiles in the KIRAMS-13 cyclotron.

Apparatus for Monitoring Oil Oxidation Using a Plurality of UV Fluorescence Light-reflecting Members (복수 경로를 지닌 자외선 형광측정기를 이용한 오일 산화도 측정장치)

  • Kong, H.;Han, H.G.;Markava, L.V.
    • Tribology and Lubricants
    • /
    • v.26 no.3
    • /
    • pp.167-174
    • /
    • 2010
  • An apparatus for measuring oil oxidation was developed, which is capable of being mounted to mechanical devices for detecting power of fluorescent light reflected from oil in real time as an indication of the oil oxidation. This device has an advantage over conventional fluorescence spectrometers where the thin film is required for the measurement. Clean and used oil samples (mineral and synthetic oils) were tested by the developed apparatus that calculates a fluorescence quantum yield and a light absorption coefficient of the oil based upon the signals from the two light-receiving members and evaluates the degree of oil oxidation of test oils based on the fluorescence quantum yield. Results generally show that the developed device is able to effectively evaluate oil oxidation characteristics on-site in the field.

Remote Real-Time Uranium Concentration Measurement Using the Nitrogen Laser and optode (질소레이저와 광섬유를 이용한 원격제어 실시간 우라늄 농도 측정)

  • Lee, Sang-Mock;Shin, Jang-Soo;Lee, Su-Mi;Koh, Kwang-Nak;Kang, Shin-Won
    • Journal of Sensor Science and Technology
    • /
    • v.6 no.5
    • /
    • pp.362-368
    • /
    • 1997
  • The remote real-time uranium concentration analysis using nitrogen laser, optode, photomultiplier and optical fiber is studied. The optode for the remote collection of uranium fluorescence is designed. The fluorescence intensity at time zero is calculated in order to exclude the quenching effect and the temperature fluctuation and used for more precise estimation. The fluorescence change is very sensitive to the uranium concentration change. The method shows the detection limit of 0.06ppm and the linearity between 0.1ppm and 2ppm of the aqueous uranium concentration.

  • PDF