• Title/Summary/Keyword: Real Gas

Search Result 1,104, Processing Time 0.034 seconds

Indoor Gas Monitoring System Using Smart Phone Application (스마트폰 어플리케이션을 이용한 실내 가스 모니터링 시스템)

  • Choi, Sung-Yeol;Choi, Jang-Sik;Kim, Sang-Choon
    • Convergence Security Journal
    • /
    • v.12 no.1
    • /
    • pp.49-54
    • /
    • 2012
  • Special applications designed for smart phone, so called "Apps" are rapidly emerging as unique and effective sources of environmental monitoring tools. Using the advantages of Information and Communication Technology (ICT), this paper propose an application that provides Indoor Gas Monitoring System. In this paper, use four wireless gas sensor modules to acquire sensors data wirelessly coupled with the advantages of existing portable smart device based on Android platform to display the real-time data from the sensor modules. Additionally, this paper adapts a simple gas classification algorithm to inform in-door Gas for users real-time based.

Program Development for Design and Part Load Performance Analysis of Single-Shaft Gas Turbines (단축가스터빈의 설계점 및 부분부하 성능해석 프로그램 개발)

  • Kim, Dong-Seop;No, Seung-Tak
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.7
    • /
    • pp.2409-2420
    • /
    • 1996
  • This paper describes the development of a general program for the design and part load performance analysis of single-shaft-heavy-duty gas turbines. Efforts are made to fully represent the real component features by the characteristic models and special emphasis is put on the modeling of cooled turbine stages. The design analysis routine is applied to simulate the performance of current gas turbines and its appropriateness for system analysis is validated. Meanwhile, the component parameters of real engines which describe the technology level are obtained. The program is extended to predicting the part load operation of gas turbines with the aid of models for the off-design characteristics of compressor, turbine and other main components. Part load simulation can be carried out only with limited numbers of input data. It is demonstrated that the program accurately estimates the part load characteristics of real turbines.

Experimental Investigation of Performance for Supersonic Impulse Turbine (초음속 충동형 터빈의 성능에 대한 시험적 고찰)

  • Lee, Hang-Gi;Jeong, Eun-Hwan;Kim, Jin-Han
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.561-565
    • /
    • 2009
  • The performance of supersonic impulse turbine was investigated experimentally. Experiment was performed with the compressed air instead of the high temperature burned gas because of the limitation of test facility and danger. As a result of the experiment with the compressed air, the performance in the real gas(burned gas) was predicted by the similarity method. The nozzle area of prototype turbine was calculated based on the real gas. So, it is difficult to satisfy the similarity conditions completely. Two similarity conditions were set and the design point for real gas was existed between two similarity conditions. And, the new turbine test model with calculated nozzle area based on the compressed air was tested. Therefore, similarity point of the new turbine test model was also existed between above two similarity points. It means that the design point for real gas was similar to the test point with the new turbine model.

  • PDF

A Study on the Operation Method of Gas Accident Prevention Supported Capital (가스사고예방지원금 운영방법의 개선에 관한 연구)

  • 송수정;강경식
    • Journal of the Korea Safety Management & Science
    • /
    • v.1 no.1
    • /
    • pp.1-6
    • /
    • 1999
  • Gas accident prevention supported capital offered by 3 Gas related rules doesn't meet the requirement of real situation when considering that deposit method and size. So the support haven't helped the gas accident prevention. The offer about the gas accident prevention supported capital is treated in this paper, The most powerful and effective method is considered in case of system prevention from gas accidents throughout the way of deposit method, size and operation method of gas accident prevention supported capital for gas accident prevention.

  • PDF

Identification of Gas Turbine Control System through operating data (발전소의 운전데이터에 의한 가스터빈 시스템 인식)

  • Jeong, Chang-Ki;Woo, Joo-Hi
    • Proceedings of the KIEE Conference
    • /
    • 1998.07b
    • /
    • pp.734-736
    • /
    • 1998
  • In this paper we obtain a discrete mathmatical model of a Gas turbine control system from experimental data. we find appropriate input signal and parameter estimation algorithm for identification of the gas turbine control system. Under these conditions experimental data are collected from real system and parameters are estimated by the recursive least square algorithm. The computer simulation results show that the proposed experimental procedure is appropriate for the identification of the gas turbine control system. The model validation is excuted by real data from the Gunsan Gas Turbine Power Plant.

  • PDF

Data Mining of Gas Accident and Meteorological Data in Korea for a Prediction Model of Gas Accidents (국내 가스사고와 기상자료의 데이터마이닝을 이용한 가스사고 예측모델 연구)

  • Hur, Young-Taeg;Shin, Dong-Il;Lee, Su-Kyung
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.1
    • /
    • pp.33-38
    • /
    • 2012
  • Analysis on gas accidents by types occurred has been made to prevent the recurrence of accidents, through analysis of past history of gas accident occurring environment. The number of gas accidents has been decreasing, but still accidents are occurring steadily. Gas-using environment and gas accidents are estimated to be closely connected since gas-using types are changing by time period, weather, etc. in terms of accident contents. As a result of analysing gas accidents by 7 meteorological elements, such as the mean temperature, the highest temperature, the lowest temperature, relative humidity, the amount of clouds, precipitation and wind velocity, it has been found out that gas accidents are influenced by temperature or relative humidity, and accident occurs more frequently when the sky is clean and wind velocity is slow. Possibility of gas accidents can be provided in real time, using the proposed model made to predict gas accidents in connection with the weather forecast service. Possibility and number of gas accidents will be checked real time by connecting to the business system of Korea Gas Safety Corp., and it is considered that it would be positively used for preventing gas accidents.

Accuracy of Paper-pencil Test used in Investigation of Control-display Stereotype - Focused on Stereotype for Control-burner Relationship of Four-stove Range - (조종장치-표시장치 스테레오타이프 조사를 위한 설문조사법의 정확성 - 4구 가스렌지 조종장치-버너 연결에 대한 스테레오타이프를 중심으로 -)

  • Kee, Dohyung
    • Journal of the Korean Society of Safety
    • /
    • v.28 no.3
    • /
    • pp.114-117
    • /
    • 2013
  • The purpose of this study is to empirically investigate accuracy of paper-pencil test used in surveying control-display stereotype. For doing this, three paper-pencil tests dealing with stereotype for control-burner relationship of four-stove gas range, in which three different gas range images were provided, were performed and the results were compared with those of existing studies. The result of the paper-pencil test using simple image composed of line and circle was different from that of the real model simulation, while the results of the other two tests and a previous study providing more realistic images were the same as that of the real model simulation. Furthermore, the proportion of responses coinciding with the real model simulation increased as images used became closer to real range. It is concluded that the paper-pencil tests well designed using realistic images may produce the same stereotype as the real model simulation.

A Study on Zone-based Risk Analysis System using Real-time Data (실시간 데이터를 이용한 지역기반 위험분석 시스템에 관한 연구)

  • Oh, Jeong Seok;Bang, Hyo Jung
    • Journal of the Korean Institute of Gas
    • /
    • v.17 no.6
    • /
    • pp.83-89
    • /
    • 2013
  • Energy industry facilities can cause fatal damage for internal industry employee as well as external general people because handling various kinds of gas and harmful substance might be spread to large scale severe accident by fire, explosion, and toxic gas leakage. In order to prevent these accidents, quantification by damage effect on structure and human is tried by using quantitative risk assessment, but it is difficult to process instantly exceptional cases and requires knowledge of expert. This paper aims to minimize exceptional cases and knowledge of expert, and present risk with human perceptible. So, we designed and developed zone-base risk analysis system that can compute risk of zone in real time at that point using database and incremental model.

A Study on Smart Real-time Atmospheric Dispersion System (지능형 실시간 대기확산 시스템에 관한 연구)

  • Oh, Jeong-Seok;Hyun, Ji-I;Bang, Hyo-Jung
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.4
    • /
    • pp.44-51
    • /
    • 2012
  • It is more important to realize safety management, medium-large accident prevention and risk prediction as accident of industry facilities can generate enormous physical and human damage because most energy plant might handle toxic substance. Especially, atmospheric dispersion system, which is able to simulate situation, have been used for release accident of toxic substance since the accident can show different of dispersion range and velocity according to release material, storage facility and atmospheric status. However those systems have been used generally in design step of industry facility and are difficult to deal with release accident quickly. Although some researches and cases have been studied for using real-time atmospheric information, there are insufficient system for processing quickly release accident. This paper aims to develop real-time smart atmospheric dispersion system that can deal with release accident quickly by enhancing distinct characteristics and efficiency of energy plant, and select release time and area using intelligent algorithm as accident prevention type.