• Title/Summary/Keyword: Reactor stability

Search Result 337, Processing Time 0.026 seconds

A study on the treatment of highly-emulsified oily wastewater by an inverse fluidized-bed biofilm reactor (역 유동층 생물막 반응기를 이용한 유분함유폐수 처리에 관한 연구)

  • 최윤찬;나영수
    • Journal of Environmental Science International
    • /
    • v.5 no.3
    • /
    • pp.361-367
    • /
    • 1996
  • An inverse fluidized-bed biofilm reactor (IFBBR) was used for the treatment of highly-emulsified oily wastewater. When the concentration of biomass which was cultivated in the synthetic wastewater reached to 6000 mg/1, the oily wastewater was employed to the reactor with a input COD concentration range of 50 mg/1 to 1900 mg/l. Virtually the IFBBR showed a high stability during the long operation period although soma fluctuation was observed. The COD removal efficiency was maintained over 9% under the condition that organic loading rate should be controlled under the value of 1.5 kgCOD/$m^3$/day, and F/M ratio is 1.0 kgCOD/kgVSS/day at $22{\circ}C$ and HRT of 12 hrs. As increasing organic loading rates, the biomass concentration was decreased steadily with decreasing of biofilm dry density rather than biofilm thickness. Based on the experimental jesuits, it was suggested that the decrease in biofilm dry density was caused by a loss of biomass inside the biofilm.

  • PDF

Effect of Hydraulic Loading on Biofilm Characteristics in an Inverse Fluidized Bed Biofilm Reactor (역 유동층 생물막 반응기에서 수리학적 부하가 생물막 성상에 미치는 영향)

  • 김동석;최윤찬
    • Journal of Environmental Science International
    • /
    • v.4 no.3
    • /
    • pp.221-228
    • /
    • 1995
  • Stability of reactor and effect on biofilm characteristics were investigated by varying the hydraulic residence time in an inverse fluidized bed biofilm reactor(IFBBR). The SCOD removal efficiency was maintained above 90 % in the HRT range of 12hr to 2hr, but the TCOD removal efficiency was dropped down to 50% because of biomass detachment from overgrown bioparticles. The reactor was stably operated up to the conditions of HRT of 2hr and F/M ratio of 4.5kgCOD/$m^3$/day, but above the range there was an abrupt increase of filamentous microorganisms. The optimum biofilm thickness and the biofilm dry density in this experiment were shown as $200\mu\textrm{m}$ and $0.08 g/cm^3$, respectively. The substrate removal rate of this system was found as 1st order because the biofilm was maintained slightly thin by the increased hydraulic loading rate.

  • PDF

OBSERVER-BASED INPUT-OUTPUT LINEARIZATION CONTROL OF A MULTIVARIABLE CONTINUOUS CHEMICAL REACTOR

  • Mohamed, Bouhamida;Bachir, Daaou;Abdellah, Mansouri;Mohammed, Chenafa
    • Journal of the Korean Mathematical Society
    • /
    • v.49 no.3
    • /
    • pp.641-658
    • /
    • 2012
  • The goal of this paper is to develop a nonlinear observer-based control strategy for a multi-variables continuous stirred tank reactor (CSTR). A new robust nonlinear observer is constructed to estimate the whole process state variables. The observer is coupled with a nonlinear controller, designed based on the input-output linearization for controlling the concentration and reactor temperature. The closed loop system is shown to be globally asymptotically stable based on Lyapunov arguments. Finally, computer simulations are developed for showing the performance of the proposed controller.

A study on reaction heat measurement and its applications of industrial batch reactor (산업용 회분식 반응기에서의 반응열 측정과 응용에 관한 연구)

  • 방성호;이용수;이석호;이광순
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.931-936
    • /
    • 1992
  • In operational pont of view, the batch reactor is quite different from the continuous reactor in that it is completely in unsteady states. This makes process variables swing over wide ranges and the process disclose its nonlinerarities. For the most part these nonlinearities are due to reaction heat. Accordingly it is very important to know the informations of reaction heat. This paper presents the method of reaction heat measurement in industrial batch reator which furnishes the limited measurable points. The informations of reaction heat are utilized in modeling of the batch reactor as well as deciding the stability and control variables.

  • PDF

Temperature Coefficient of Reactioity (원자로의 반응도와 온도계수)

  • 노윤래
    • 전기의세계
    • /
    • v.15 no.5
    • /
    • pp.1-5
    • /
    • 1966
  • The stability and safety of operation of a reactor is determined mainly by the sign and magnitude of its reactivity responses to temperature changes. Reactors are subject to temperature fluctuations due to the changes in reactor power and ambient temperature. These temperature fluctuations cause reactivity disturbances through changes in the nuclear and physical properties of the core. Because of these important phenomena by the temperature effects, a large portion of study and testing on a reactor design has been conducted. In this experiment the overall temperature coefficient of the TRIGA MARK-II reactor is measured. The basic procedure is to change the tgemperature of the water moderator, and from the movements of a newly recalibrated control rod(this is necessary due to the effects of fuel burn-up and control rod depression) required to mintain criticality, the reactivity worth of the temperature change is determined. From this measurement, the overall temperature coefficient seems to be smoothly varying, almost a linear function of temperature, and a value of approximately -0.267${\c}$/$^{\circ}C$ can be obtained for an average temperature range from $17.6^{\circ}C$ to $32.5^{\circ}C$.

  • PDF

Study on the Numerical Analysis of Nuclear Reactor Kinetics Equations (원자로 동특성 방정식의 수치해석에 관한 연구)

  • Jae Choon Yang
    • Nuclear Engineering and Technology
    • /
    • v.15 no.2
    • /
    • pp.98-109
    • /
    • 1983
  • A two-step alternating direction explicit method is developed to solve the space-dependent reactor kinetics equations in two space dimensions. As a special case in the general class of alternating direction implicit methods, this method is analysed for accuracy and stability. To test the validity of this method it is compared with the implicit-difference method used in the TWIGL program. It is shown that the two methods are closely related. The time dependent neutron fluxes of the pressurized water reactor (PWR), during control rod insertion, and, of the CANDU-PHW reactor, in case of postulated loss of coolant accident, are obtained from the numerical calculation results.

  • PDF

Operational characteristics analysis of a 8 mH class HTS DC reactor for an LCC type HVDC system

  • Kim, S.K.;Go, B.S.;Dinh, M.C.;Kim, J.H.;Park, M.;Yu, I.K.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.17 no.1
    • /
    • pp.32-35
    • /
    • 2015
  • Many kinds of high temperature superconducting (HTS) devices are being developed due to its several advantages. In particular, the advantages of HTS devices are maximized under the DC condition. A line commutated converter (LCC) type high voltage direct current (HVDC) transmission system requires large capacity of DC reactors to protect the converters from faults. However, conventional DC reactor made of copper causes a lot of electrical losses. Thus, it is being attempted to apply the HTS DC reactor to an HVDC transmission system. The authors have developed a 8 mH class HTS DC reactor and a model-sized LCC type HVDC system. The HTS DC reactor was operated to analyze its operational characteristics in connection with the HVDC system. The voltage at both ends of the HTS DC reactor was measured to investigate the stability of the reactor. The voltages and currents at the AC and DC side of the system were measured to confirm the influence of the HTS DC reactor on the system. Two 5 mH copper DC reactors were connected to the HVDC system and investigated to compare the operational characteristics. In this paper, the operational characteristics of the HVDC system with the HTS DC reactor according to firing angle are described. The voltage and current characteristics of the system according to the types of DC reactors and harmonic characteristics are analyzed. Through the results, the applicability of an HTS DC reactor in an HVDC system is confirmed.

GLOBAL STABILITY OF THE POSITIVE EQUILIBRIUM OF A MATHEMATICAL MODEL FOR UNSTIRRED MEMBRANE REACTORS

  • Song, Yongli;Zhang, Tonghua
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.2
    • /
    • pp.383-389
    • /
    • 2017
  • This paper devotes to the study of a diffusive model for unstirred membrane reactors with maintenance energy subject to a homogeneous Neumann boundary condition. It shows that the unique constant steady state is globally asymptotically stable when it exists. This result further implies the non-existence of the non-uniform steady state solution.

Stabilization of Tyrosinase for Catechol Production (Catechol생산을 위한 Tyrosinase의 안정화)

  • 박종현;김용환유영제이윤식
    • KSBB Journal
    • /
    • v.9 no.5
    • /
    • pp.525-531
    • /
    • 1994
  • Tyrosinase has two types of enzymatic activities, cresolase catalyzing the hydroxylation of monophenol and catecholase catalyzing the oxidation of o-phenol. Gradual inactivation of the enzyme during the reaction is a barrier to be overcome for the commercial application of the enzyme. Tyrosinase was stabilized by modifying the lysine residue of the enzyme using glutaraldehyde. In addition to that, tyrosinase was also stabilized by adapting the continuous reactor system. In packed bed reactor quinone could be easily removed, so the stability of tyrosinase increased. Borate buffer retarded the reaction rate of catechol to quinone and consequently decreased the tyroslnase inactivation. Tyrosinase immobilizer on controlled pore glass showed significantly enhanced stability in a packed-bed reactor.

  • PDF

Self-pressurization analysis of the natural circulation integral nuclear reactor using a new dynamic model

  • Pilehvar, Ali Farsoon;Esteki, Mohammad Hossein;Hedayat, Afshin;Ansarifar, Gholam Reza
    • Nuclear Engineering and Technology
    • /
    • v.50 no.5
    • /
    • pp.654-664
    • /
    • 2018
  • Self-pressurization analysis of the natural circulation integral nuclear reactor through a new dynamic model is studied. Unlike conventional pressurized water reactors, this reactor type controls the system pressure using saturated coolant water in the steam dome at the top of the pressure vessel. Self-pressurization model is developed based on conservation of mass, volume, and energy by predicting the condensation that occurs in the steam dome and the flashing inside the chimney using the partial differential equation. A simple but functional model is adopted for the steam generator. The obtained results indicate that the variable measurement is consistent with design data and that this new model is able to predict the dynamics of the reactor in different situations. It is revealed that flashing and condensation power are in direct relation with the stability of the system pressure, without which pressure convergence cannot be established.